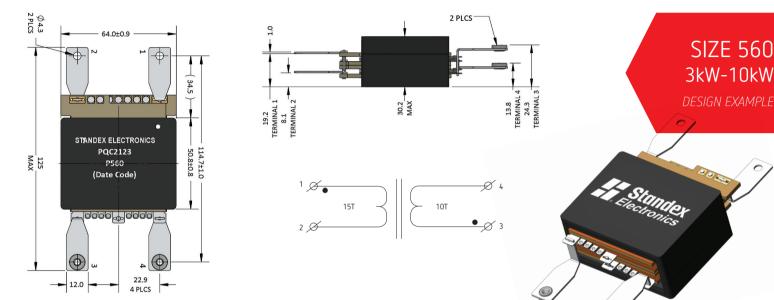


TRANSFORMER DESIGN | EXAMPLE - PQC1901 (U.S. PAT. 7,460,002)

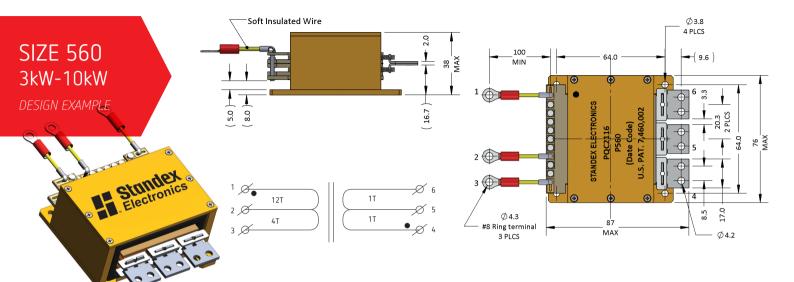

Topology	Half Bridge ZVS
Input Voltage	800VDC
Output Power (Output Voltage/Current After Rectification)	6144W Max. (24VDC/256A)
Turns Ratio - Np/Ns	20T/1T + 1T
Switching Frequency	50kHz
Duty Cycle, Max.	100%
Efficiency At Full Power (Calculated)	99.24% (47W Losses)
Ambient Temp. Max. (Transfer clamped to heatsink)	+85°C
*Hastciak Provided By Custemer	

Temperature Rise Hot Spot Heatsink, Max.*	+37.6°C				
Minimum Isolation Voltage					
Primary To Secondary And Core	3000VDC				
Secondary To Core	500VDC				
Primary Inductance, Np, Min.	4000µH				
Primary Resistance, Np, Max.	30m0hm				
Secondary Resistance, Ns, Max.	0.25m0hm				
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	ЗμН				
Weight Range	650-700grams				

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

ELECTRICAL SPECIFICATIONS


TRANSFORMER DESIGN | EXAMPLE - PQC2123

Topology	Full Bridge ZVT
Input Voltage	760-840VDC
Output Power (Output Voltage / Current After Rectil	fication)12kW max. (500VDC/24ADC)
Output Power (Output Voltage/Current After Rectil	fication) 28.4VDC / 83A, 100A Surge
Turns Ratio - Np/Ns	15T/10T
Switching Frequency	100kHz
Duty Cycle At Low Input Voltage Max.	99.0%
Efficiency At Full Power (Calculated)	99.3% (87.4W Losses)
External Heatsink Temperature Max.	+45°C
*Heatsink Provided By Customer	

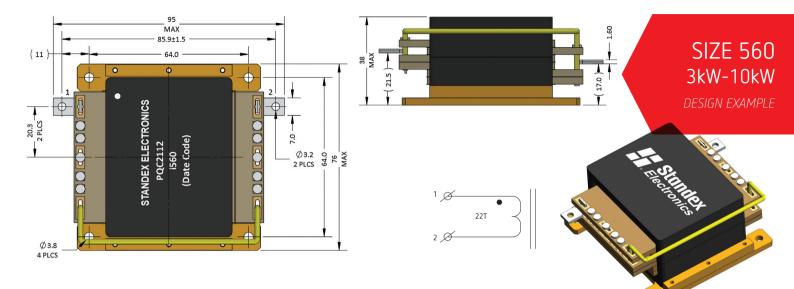
Temp. Rise Hot Spot External Heatsink*, Max.	+69.9°C
Minimum Isolation Voltage	
Primary To Secondary And Core	5700VAC for 1sec
Secondary To Core	2850VAC for 1sec
Primary Inductance, Np, Min.	600µH
Primary Resistance, Rdc, Np, Max.	20m0hm
Secondary Resistance, Rdc, Ns, Max.	18m0hm
Leakage Inductance 1-2/3-4 Shorted, Typ.	1.8µH
Weight Range	300-800grams

NOTES:

 1) FOR OPTIMAL PERFORMANCE A THERMALLY
CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND
HEATSINK SHOULD BE UTILIZED
2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING
3) CUSTOM TERMINALS CAN BE DESIGNED AND
OPTIMIZED

TRANSFORMER DESIGN | EXAMPLE - PQC2116

Topology Full	Bridge ZVS
Input Voltage Np1 = 12 Turns (1-2) 350	-630VDC
Input Voltage Np2 = 16 Turns (1-3) 500	-820VDC
Output Power (Output Voltage/Current After Rectification) 28V	DC/250A (7kW)
Turns Ratio - Np1/Np2/Ns1/Ns2 12T	/16T/1T/1T
Switching Frequency 100	lkHz
Duty Cycle, At Vin=350VDC Max. 999	6
Efficiency At Full Power (Calculated) 99.2	2% (55W losses)
External Heatsink Temperature Max. +65	°C
*Transformer Clamped To Heatsink	


Temp. Rise Hot Spot External Heatsink*, Max.	+44°C
Minimum Isolation Voltage	
Primary To Secondary And Core	2700VAC
Secondary To Core	500VDC
Primary Inductance, Np1 (1-2)/Np2 (1-3), Min.	1440/2560µH
Primary Resistance, Rdc, Np,1 (1-2)/Np2 (1-3), Max.	14/18m0hm
Secondary Resistance, Rdc, Ns1 + Ns2, Max.	0.3m0hm
Leakage Inductance 1-2/Sec. Shorted, Typ.	900nH
Leakage Inductance 1-3/Sec. Shorted, Typ.	1800nH
Weight Range	300-800grams

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED

2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

INDUCTOR DESIGN | EXAMPLE - PQC2112 (U.S. PAT. 7,460,002)

IONS	Inductance At Rated Current	100µH ±10%	Temp. Rise Hot Spot Baseplate, Max.	+46°C	
ECIFICAT	Rated Current (Ave. ±12.5A Ripple)	32ADC +3App	Heatsink Temperature Max.	+55°C	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
TRICAL SP	Ripple Frequency	100kHz	Resistance Max.	22m0hm	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
ELEC	Minimum Isolation Voltage (Winding To Core)	2500VDC	Total Losses At Max. Current	28.7W	3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED