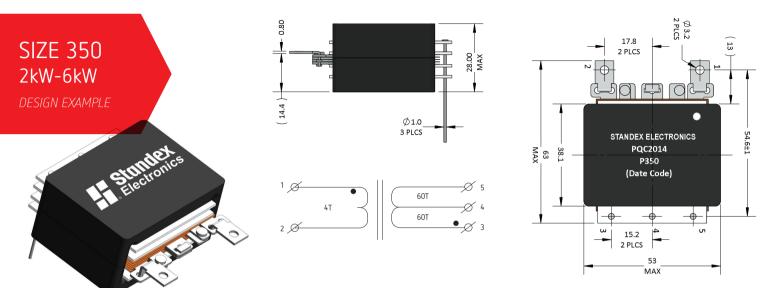

SOLUTIONS | Planar Transformers & Inductors

SIZE 350 2kW-6kW DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC1954 (U.S. PAT. 7,460,002)

Full Bridge ZVS

	lopology	Full Bridge ZVS
NS	Input Voltage	350-750VDC
ATIO	Output Power (Output Voltage/Current After Rectification)	2.5kW typ. 3kW surge
EC/	Output Power (Output Voltage/Current After Rectification)	28.4VDC/83A, 100A surge
ELECTRICAL SPECIFICATIONS	Turns Ratio - Np/Ns	16/2+2T
IS 1	Switching Frequency	100kHz
SICA	Duty Cycle At Low Input	80.0%
Ľ.	Efficiency At Full Power (Calculated)	99.1% (21W losses)
ELE	Baseplate/Heatsink Temperature Max.	+85°C
	Mounted On Heatsink With Max. Temp.	+90°C


Tagalage

Temp. Rise Hot Spot Baseplate, Max.	+21°C
Minimum Isolation Voltage	
Primary To Secondary And Core	2500VAC for 1min
Secondary To Core	500VDC
Primary Inductance, Np, Min.	1792µH
Primary Resistance, Rdc, Np, Max.	22mOhm
Secondary Resistance, Rdc, Ns, Max.	1m0hm (0.5+0.5m0hm)
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	1.5µH
Weight Range	150-400grams

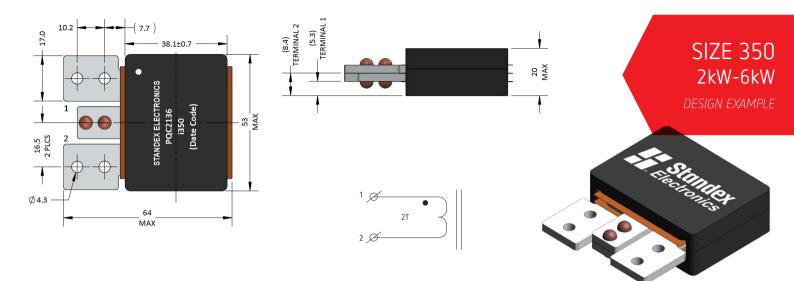
NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING

SOLUTIONS | Planar Transformers & Inductors

TRANSFORMER DESIGN | EXAMPLE - PQC2014

S	
z	
9	
Ē	
≅	
≝	
<u> </u>	
ж	
5	
<u> </u>	
A	
<u>ں</u>	
2	
E	
2	
Щ	
Ē	


Topology	Full Bridge ZVS
Input Voltage	110-150VDC
Output Power (Output Voltage/Current After Rectification)	3100VDC/0.5A (1.55kW max)
Turns Ratio Np / Ns1 + Ns2	4T/60T + 60T
Switching Frequency	100kHz
Duty Cycle At 150 VDC	95%
Efficiency At Full Power (Calculated)	99.3% (11W losses)
Ambient Temperature Max.	+20°C
Airflow Temperature, Speed (Recommended)	50CFM

Temp. Rise Hot Spot Heatsink, Max.	+53°C		
Minimum Isolation Voltage			
Primary To Core	500VAC		
Secondary To Primary And Core	3000VDC		
Primary Inductance, Np, Min.	100µH		
Primary Resistance, Np, Max.	2m0hm		
Secondary Resistance, Ns1 or Ns2, Max.	800m0hm		
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	0.2µH		
Weight Range	150-400grams		

NOTES:

 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING

SOLUTIONS | Planar Transformers & Inductors

INDUCTOR DESIGN | EXAMPLE - PQC2136

NS	Inductance At Rated Current	0.5µH ±3%	Temp. Rise Hot Spot Baseplate (Heatsink Cooling), Max.	+40°C	NOTES:
ELECTRICAL SPECIFICATIO	Rated Current (Ave. ±12.5A Ripple)	250A	Heatsink Temperature Max.	+65°C	 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
	Ripple Frequency	200kHz	Resistance Max.	0.2m0hm	
	Minimum Isolation Voltage (Winding To Core)	500VDC	Total Losses	18.4W	