SOLUTIONS | Planar Transformers & Inductors

TRANSFORMER DESIGN | EXAMPLE - PQC2159

Topology	Push Pull
Input Voltage	23-125VDC
Output Power (Output Voltage/Current Aft	er Rectification)
Ns1+Ns2 (320W Nom. Power)	13VDC/24.6A
Naux1+Naux2	16VDC/0.04A
Turns Ratio - Np1/Np2/Ns1/Ns2/Naux	1/Naux2 3T/3T/2T/2T/3T/3T
Switching Frequency	70kHz
Duty Cycle, Max. Vin=23VDC	88.0%
Efficiency At Full Power (Calc.)	99% (3.2W losses)
Mounted On Heatsink With Max. Temp.	+90°C

emp. Rise Hot Spot External Heatsink, Max.	+30°C
Ainimum Isolation Voltage	
Primary To Core, Secondary Ns1 And Naux1	1500VAC
Secondary Ns1 To Core	500VDC
Naux To Core	1500VAC
Primary Inductance, Np1 And Np2, Min.	45µH
Primary Resistance, Rdc, Np1 And Np2, Max.	2.5m0hm
econdary Resistance, Rdc, Np1 And Np2, Max.	1.2m0hm
eakage Inductance Np1+Np2/Ns1+Ns2 Shorted, Typ.	150nH
Veight Range	100-250grams

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SHIELD-ING ON HIGH CURRENT WINDING

11.4

0

ò ø

7.6

11.4 15.2

50.8±0.5

MAX

SOLUTIONS | Planar Transformers & Inductors

Topology	Full Bridge ZVS
Input Voltage	350-450VDC
Output Power (Output Voltage/Current After Rectification)	800W (320VDC/2.5ADC)
Turns Ratio - Np/Ns	5T/40T
Switching Frequency	100kHz
Duty Cycle, Max. 2.5A Operation	88%
Efficiency At Full Output 2.5A Operation (Calc.)	99.25% (6W losses)
External Heatsink Temperature Max.	+90°C
Temp. Rise Hot Spot External Heatsink, Max.	+20°C (2.5A operation)
Transformer Clamped To Heatrick	

Minimum Isolation Voltage	
Primary To Secondary And Core	1000VAC
Primary To Core	500VAC
Primary Inductance, Np, Min.	150µH
Primary Resistance, Np, Max.	2m0hm
Secondary Resistance, Max.	200m0hm
Leakage Inductance 3-4/1-2 Shorted, Typ.	8.0µH
Leakage Inductance 1-2/3-4 Shorted, Typ.	125nH
Weight Range	100-250grams

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SHIELD-ING ON HIGH CURRENT WINDING

SOLUTIONS | Planar Transformers & Inductors

INDUCTOR DESIGN | EXAMPLE - PQC2039

SNC	Inductance At Rated Current	2.4µH ±3%	Temp. Rise Hot Spot External Heatsink, Max.	+40°C	NOTES:
ECIFICATIO	Rated Current	100A	Heatsink Temperature Max.	+65°C	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
trical sf	Ripple Frequency	150kHz	Resistance Max.	1m0hm	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
ELEC	Minimum Isolation Voltage (Winding To Core)	2000VDC	Total Losses	10W	