

Standex | Smart.

Partner, Solve, Deliver[®] "Solving your complex problems is why we exist."

CONTENTS

- O3 About Standex
- 04 Who We Are / Where We Play
- 06 Our Capabilities
- 08 Our Approach & Process
- **10** Planar Magnetics
- **12** Customer Configurations
- 16 10W-1kW Transformers & Inductors
- 24 1kW-10kW Transformers & Inductors
- 36 10kW-250kW Transformers & Inductors
- 43 PQ Planar Inductors

ABOUT STANDEX

0

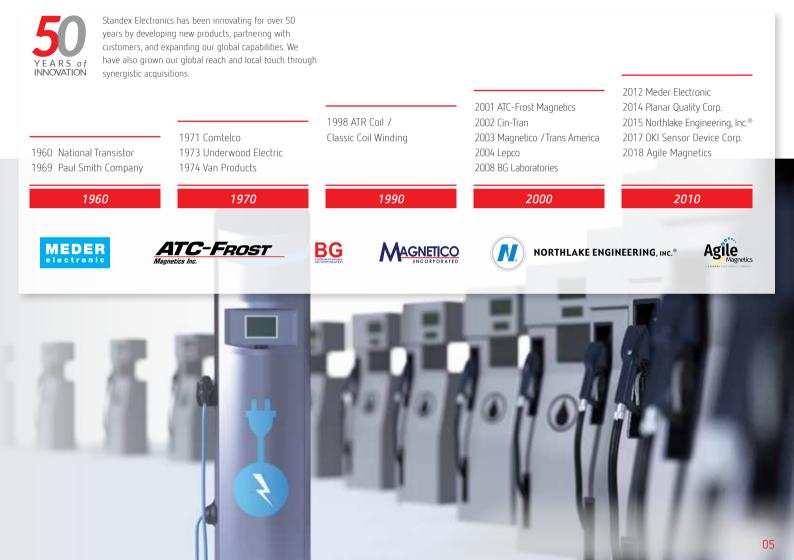
Customer Focused Engineering Solutions. "Innovating for more than 50 years."

The Standex Electronics business, a division of Standex International Corporation (NYSE:SXI), has been providing solutions through high-performing products since the 1950's. Through growth, acquisition, strategically partnering with customers, and applying the latest engineering designs to the needs of our ever-changing world, Standex Electronics technology has been providing quality results to the end-user. The approach is achieved by partnering with customers to design and deliver individual solutions and products that truly address customers' needs.

Standex Electronics is headquartered in Cincinnati, Ohio, USA, Standex Electronics has nine manufacturing facilities in six countries, located in the United States, Germany, China, Mexico, the United Kingdom, and Japan.

03

WHO WE ARE / WHERE WE PLAY


Powerfully transforming. "When failure is not an option, designers of critical electronic components rely on Standex and their decades of experience."

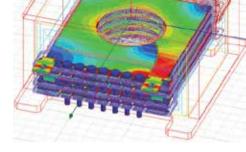
Standex Electronics is a worldwide market leader in the design, development and manufacture of custom magnetics and power conversion components and assemblies. Our work, growth, and dedication to providing reliable high-quality products through our engineering and manufacturing expertise go beyond products we ship. We offer engineered product solutions for a broad spectrum of product applications in all major markets, including but not limited to:

- Aerospace & Military
- Alternative Energy
- Automotive (EV) & Transportation
- Electric Power & Utilities
- Medical
- Smart Grid & Metering
- Industrial & Power Distribution
- Test & Measurement
- Security & Safety
- Household & Appliances

Our values and what we believe align to the partner, solve, and deliver® approach. We produce parts but we are more than that. Connecting with your team as a strategic partner, listening to your challenges, and arriving at ways to solve your complex problems through our solutions are why we exist. We have custom capabilities that address your needs. Our team leverages our dynamic and diverse engineering expertise and other resources such as our global facilities for logistics and production.

Standex | Strong.

OUR CAPABILITIES



IATF 16949

REGISTERED **A S 9 1 0 0**

MANUFACTURING

52 to 5awg Magnetic Wire Winding Foil, Flat, & Square Wire Winding Automatic CNC Winding Bobbin, Layer, & Self-Supporting Winding Toroidal Hook & Shuttle Winding Thermoplastic & Thermoset Overmolding Impregnation, Casting, & Potting Void-Free Vacuum Potting NASA Certified Soldering Wire Prep & Harness Assembly Injection Molding Metal & Plastic Fabrication Lean Manufacturing Principles Complete, In-House Machine Shop Poka-Yoke "Mistake Proofing"

ENGINEERING

3-D CAD Modeling
3-D Printing
Mechanical Design & Packaging
Rapid Prototyping
Magnetic Simulation Software
Mechanical, Thermal & FEA Analysis
Plastic Mold Flow Simulation
APQP Project Management

QUALITY & COMPLIANCE

AS9100 & IATF16949 Certifications ITAR Compliance Regulatory Agency Approvals PPAP & First Article Inspection SPC Data Collection

TESTING & LAB CAPABILITIES

Automated Transformer Testing Medical Safety Testing High Voltage / Partial Discharge Testing Full Load & Temperature Rise Testing 2-D/3-D Microfocus X-ray Inspection Digital Microscopic Inspection MIL-STD-202 In-House Qualification Testing Mechanical, Shock & Vibration Burn-In & Life Testing Thermal Shock & Temperature Cycling Humidity, Salt Fog, & Solderability Moisture Resistance & Seal Testing

That's **Standex** Strong.

standexelectronics.com

PARTNER | SOLVE | DELIVER®

Our Approach

PARTNER // TEAMWORK

Dig deep into the customer's project and develop relationship through our thought leadership, expertise, team, and global footprint.

Our Process

SOLVE // UNDERSTAND

Capabilities, lab, size, shape, power management, ranges, frequency, and more around how our capabilities can provide efficient, productive, designs & products.

DELIVER // QUALITY

Help customers win through our diverse products, dynamic capabilities, reliable high-quality magnetics solutions, and customer driven innovation and service.

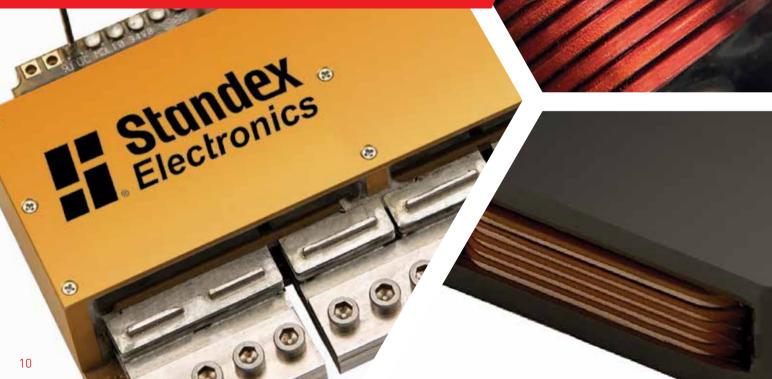
٠

•

٠

•

Complex problems deserve custom solutions - As your "application engineer experts", we deliver custom design, development, and manufacture of reliable high-quality planar magnetics that are used across all major markets.


Stande Electronic	5		· ·	6	
Planar Inductor Request Form		Fill ou	t a design request today!	Standex Electronics	PARTNER SOLVE DELIVE
Me meet each unique need encomposed		nakiliine ta nastaar	solve, and deliver= custom engineered solutions. Complete the	Electronics	
form below and our engineers and pro-	uct specialists will	review your reques	t and respond with information targeting your application.		Fill out a design request today!
				Planar Transformer Request Form	- I li out a design request today:
* Inductor Application			* required fields		
Design Priorities - Cost? Height? Efficiency?		v	Why are you choosing Planar Magnetics over other magnetics?	We meet each unique need, encompassing our global cap form below and our engineers and product specialists will r	abilities to partner, solve, and deliver® custom engineered solutions. Complet review your request and respond with information targeting your application.
				* Application	* required fit
				Design Priorities - Cost? Height? Efficiency?	Why are you choosing Planar Magnetics over other magnetics?
* RFQ Quantities	G1 Q4	Q8			
Target Price		s	ample Quantity Est. Annual Usage	11	
Currency				10	
				N 07 02 03 04	as
ELECTRICAL SPECIFICATIONS		M	ECHANICAL SPECIFICATIONS	* RFQ Quantities	
* Operating Frequency	kHz		fax Dimensions in mm L W H	Target Price USD	Sample Quantity Est. Annual Usage
* Winding 1 µH	Adc	Arms T	ermination Style	Lamy	
Winding 2 µH Winding 3 µH	Adc Adc	Arms E	ixplain Other	FLECTRICAL SPECIFICATIONS	COOLING SPECIFICATIONS
Winding 4 µH	Adc	Ams			
Winding 5 µH	Adc	Ams		* Topology Forward	* Max Ambient Temperature Max. Allowed Transformer Temperature (if applicable?)
Considerations for min Inductance at Max Amp				Other / Additional Info	Max. Allowed Transformer temperature (1 applicable)/
Inductance last	A/2:	Arms C0	DOLING SPECIFICATIONS		1)* Airflow? Yes Free apply Airflow Value C
Max AC Peak to Peak Ripple Current			fax Ambient Temperature "C		FLAVor not net an Fan Diameter II
Isolation Requirements	Vdc		tax. Allowed Transformer Temperature (if applicable)? "C	"Ryback Continuous - supply peak current, " Ryback Discore	danar. An Alta ta Alta
Clearance Requirements (If needed)			* Airflow? Yos / Mis. Ten supp. Airflow Value CFM	supply unwellarms or all load conditions, ¹¹¹ LLC Resonant - supp non frequency, load conditions acreas operating range, waveform required typical inductance, careter tap?	ply min, max, nr / possible, Yes // Hes Ben Lappy "C
	- mm		PARTICIAL PROPERTY AND CONTRACTOR		3) Other Considerations
Creepage Requirements (if needed)	-		Fan Diameter IN	* Operating Frequency 1/12	
		2	()* Coldplate? Max. Coldplate Temp. Yes: #106.000 (C	* Total Output Power W	
			10x Pischerators	* Input Voltage Vdc * Input Voltage	Vide MECHANICAL SPECIFICATIONS
		Ī		Duty Cycle % * Duty Cycle	% Max Dimensions in mm L W F
				Primary Center Tap? Secondary Center Tap?	Termination Style SMD
				* Output 1 Vdc(V) Idc(A)	Explain Other
				Output 2 Vdc(V) Idc(A) Output 3 Vdc(V) Idc(A)	
CUSTOMER INFORMATION				Cutput 3 Vdc(V) Idc(A) Cutput 4 Vdc(V) Idc(A)	Turn Ratio Np/Naec 1 Turn Ratio Np/Naec 3
* Name			Itate / Province / Region	* Isolation Vdc Vdc	Turn Ratio Np/Nsec 2 Turn Ratio Np/Nsec 4 Vdc * Normally. Standar, can determine the optimal turns ratio for each dealers.
* Company			tip / Postal Code	Primary to Secondary Primary to Com Seconda	
* Email			country comments	CUSTOMER INFORMATION	
Telephone Street Address			commenta		
City				* Name * Company	* State / Province / Region * Zip / Postal Code
				* Email	* Country
standovolosts			inductor coquest form / we	Telephone	Commenta
scannevelecto	JHICS.COM	n pianar-	inductor-request-form/ vo2	Street Address	

standexelectronics.com/planar-transformer-request-form/

Standex | Smart.

"Planar magnetics offer improved power density and performance compared to equivalent wire wound designs."

PLANAR MAGNETICS

ADVANTAGES OF WORKING WITH STANDEX ELECTRONICS

Global Design and Manufacturing

- Experienced with creating custom solutions for partners across the globe
- Capable of leveraging global supply chains on behalf of our partners
- Global manufacturing locations provides options regarding cost vs timing

Ready and Willing to Grow with Our Partners

- Part of a \$1B publicly traded corporation with access to capital markets
- Able to make investments to grow our capacity along with our partners
- · Forward focused supplier that you can depend on in the long run

Deep Technical Expertise

- Over 100 years of custom magnetics design experience
- Capable of proving design calculations, simulations and prototype samples
- Portfolio of technical solutions developed through years of custom designs
 - US Patent 7,129,809 for surface mount header
 - US Patent 7,460,002 for custom terminal design
 - Optimized footprints & thermal management
 - Custom encapsulation/potting methods to meet isolation requirements

Broad Product Portfolio and Capabilities

- Experienced manufacturer of both planar and traditional magnetic designs
- Wide power range of 25W to 250kW and frequency range of 20kHz-1MHz+
- One-stop shop able to fully test components to meet rigorous certifications

ADVANTAGES OF STANDEX ELECTRONICS' DESIGN APPROACH

Minimized Footprint

- · Planar better utilizes core space, enabling more compact magnetic designs
- Standex uses ER Cores, which allows most compact designs in the industry
- Flexible termination designs allow fit into existing space with minimal redesign

Optimized Performance

- High power density enables 99%+ efficiency with significantly lower material
- Optimized core cross section and low turn count minimizes losses
- Compact design better allows heat transfer out of components

High Reliability

- · Elimination of hand winding reduces part to part variation
- Use of PC boards and encapsulation methods allow high isolation
- ER core geometry reduces EMI that may interfere with sensitive equipment of custom designs

Partner in Innovation

- Experience in fully custom designs for customers large and small
- Plastic molding expertise, enabling unique isolation and value-add solutions
- · Capable of providing full thermal management designs, as needed

That's **Standex** | Smart.

standexelectronics.com

"Planar technology is making headway in some of the most demanding applications and emerging markets."

Tenperature [e1] 8. 7052-01 8. 9022-02 8. 90210-02 9. 9020-02

We offer engineered planar magnetics solutions for a broad spectrum of product applications in all major markets. Battery charging, electric vehicles, solar inverters, aviation, healthcare, and industrial markets are just some of the areas where planar technology is gaining ground.

APPLICATIONS

Automotive, Electric & Hybrid Vehicles Renewable Energy - Wind & PV Systems Aerospace & Military (high reliability & repeatability) Welding, Lasers & Test Equipment DC-DC Converters AC-DC Resonant Designs Appliance Battery Charging (12V, 24V, 48V, 1-10 KW) Switch Mode Power Supplies Distributed Isolated Power Feedback Control High Current POL Converters High Power LED Lighting & Industrial Power Isolated Inverters Isolated (unregulated) Bus Conv. (Vout 9-12V) Server – Data Centers (400VDC) Telecom ("Sweet Spot" 36-72 Vin 40-250W)

FAST CHARGER

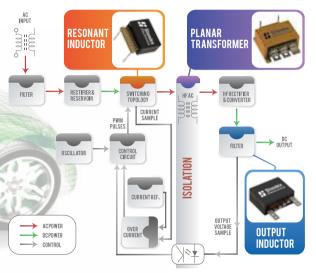
Power Range 15kW - 100kW

- Main Transformer
- Resonant Inductor

BATTERY MANAGEMENT SYSTEM

Power Range 25W

• Transformer


111 Marcov

DC/DC CONVERTER

Power Range 1kW - 7kW

- Main Transformer
- Output Choke
- Resonant Inductor

"Planar transformers and inductors are the ideal solution for efficient SMPS applications."

ONBOARD CHARGER

Power Range 3.3kW - 6.6kW

- Main Transformer
- Resonant Inductor

Complex problems deserve custom solutions - "Inductors available for design in all packages."

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

:	Size "Semi- Standard Package"	Optimum Power Range (W)	Page #	Max Current Rating (A)	Optimum Frequency Range (kHZ)	Forward	Flyback	Full Bridge	Full Bridge (ZVS)	Half Bridge	Half Bridge (ZVS)	Push-Pull	Resonant LLC	Typ. L	Dimensio W (mm)	ons ⁽⁴⁾ H	lsolation Pri-Sec, Pri-Core (VDC)
	025 (1)	10 - 50 ⁽²⁾	14	20 ⁽³⁾	300 - 500	\checkmark	\checkmark							17	16	7	500 - 2k
~	035 (1)	20 - 150 ⁽²⁾	15	30 ⁽³⁾	200 - 400	\checkmark	V							23	20	8	500 - 2k
POWER	055 (1)	50 - 200 ⁽²⁾	16	50	175 - 300	\checkmark	V							25	22	10	500 - 2k
LOW F	075 (1)	100 - 500 (2)	17	50 ⁽³⁾	150 - 300		V	V						29 - 35	27	11	5k, 500 - 2k
	110 (1)	150 - 700 ⁽²⁾	18	60 ⁽³⁾	100 - 250			V	V	V		V		34 - 40	29	13	5k, 500 - 2k
	135 (1)	300 - 1.2k	19	100	100 - 250			V			V	V		39 - 45	32	13 - 16	5k, 500 - 2k
VER	220 (1)	1k - 3k	22	250	60 - 200			V	V	V	V	V	V	46 - 51	41	18 - 21	5k, 500 - 2k
MID POWER	350 ⁽¹⁾	2k - 6k	25	300	40 - 150			V			V		V	54 - 59	51	22 - 26	5k, 500 - 2k
Σ	560 ⁽¹⁾	3k - 10k	28	400	40 - 125			V	V		V	V	V	66 -72	64	26 - 31	5k, 500 - 2k
	900 (1)	10k - 20k	34	500	40 - 125			V					V	119	111	44	5k
HIGH	2100 (1)	10k - 100k	37	600	20 - 125			V					V	195	109	45	5k
	4000 (1)	100k - 250k	38	1000	20 - 125									307	164	63	5k

(1) Size Is Preceded By "p" for Transformer Or "i" For Inductor

(3) Current Rating Is 30% Higher For Through-Hole Applications

(2) Patented (U.S. PAT. 7,129,809) Header Design With Superior Thermal Management, Coplanarity, And Repeatable Height (4) Length (L) May Vary Depending On Terminals/ Height (H) Depending On Input / Output Requirements

Second stands of stands of multi-layer SPCB's and lead frames that can be custom configured for your custom power requirements.

CUSTOMER CONFIGURATIONS

- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- · Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Inductors available for design in all packages
- Value-added assemblies

Dual heatsink package with transformer and DC output inductor

Surface mount solution with increased creepage and clearance

Custom control transformer with multiple outputs

Custom Configurations / Standard Sizes

CUSTOM CONFIGURATIONS

Inductors, >30kW, Thermal Solutions, and Custom Terminations

HIGH POWER 10kW-250kW SIZE 900, 2100, 4000

MID POWER 1kW-10kW SIZE 220, 350, 560

LOW POWER 10W-1kW SIZE 035, 055, 075, 110, 135

Custom 6kW transformer with custom primary and secondary connections to accommodate customer packaging Custom heavy style busbar terminals for high current connection and thermal management

DC output inductor with narrow footprint and custom heatsink

Standex | Strong.

LOW POWER // 10W-1kW

"High Frequency Efficiency"

Size 025-135 is ideally suited for low power applications with an optimal power range of 10W-1kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range:10W - 1kWCurrent Rating Max.:5-100A (+30% for THT)

Optimum Frequency Range: 300 - 500kHZ

Mounting Options:

Surface Mount (SMD), Through-Hole (THT)

Topologies:

Forward, Flyback, Full Bridge, Full Bridge (ZVS), Half Bridge, Half Bridge (ZVS), Push-Pull

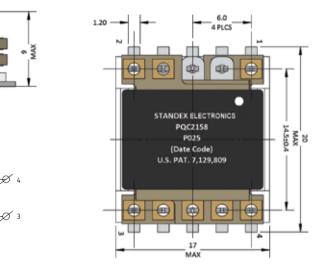
Typical Dimensions:

L	W	Н
17-45mm	16-32mm	6-20mm

Length (L) May Vary Depending On Terminals Height (H) Depending On Input & Output Requirements

APPLICATIONS

timestati


Standex Electronics

- Renewable Energy Photovoltaic Systems
- Aerospace & Military (high reliability & repeatability)
- Test Equipment
- Switch Mode Power Supplies
- Distributed Isolated Power
- Telecommunications
- Battery Management Systems
- Automotive, Electric & Hybrid Vehicles

CUSTOMER CONFIGURATIONS

- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Custom footprints for isolation requirements

That's **Standex** Stro

TRANSFORMER DESIGN | EXAMPLE - PQC2158 (U.S. PAT. 7, 129, 809)

2.00

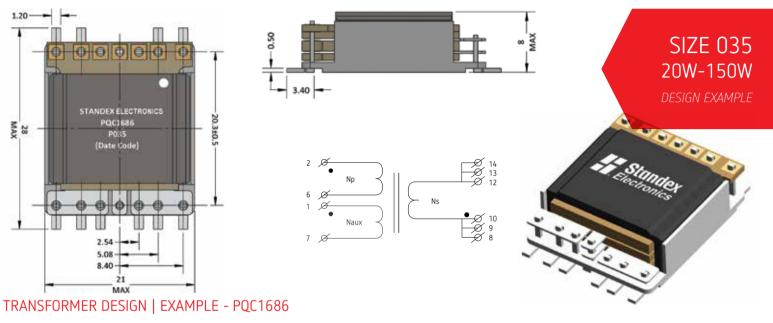
1 Ø

2 A

Topology	Forward w/Active Reset	Temp
Input Voltage	15-42VDC	Minir
Output Voltage/Current After Rectification	15VDC/2ADC	Pri
Turns Ratio - Np/Ns	6T/12T	 Se
Switching Frequency	300kHz	Prim
Duty Cycle At Low Input Voltage Max.	53.0%	Prim
Efficiency At Vin.=28Vdc/30W Output Calc.	98.2% (0.53W losses)	Seco
Operating Ambient Range (Full Load)	-20°C to +85°C	Leak
*W/base based and be sub-shared and and desired units and	and the latter teacher and a	10/-:-

Temp. Rise, Max.	+15°C
Minimum Isolation Voltage	
Primary To Secondary And Core	200VDC
Secondary To Core	200VDC
Primary Inductance, Np, Min.	43µH
Primary Resistance, Rdc, Np, Max.	9m0hm
Secondary Resistance, Rdc, Ns, Max.	65m0hm
Leakage Inductance 1-2/3-4 Shorted, Typ.	0.2µH
Weight Range (Approximate)	12-50grams

12T

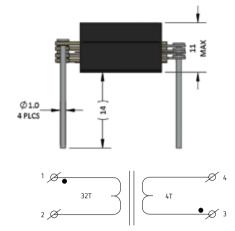

NOTES:

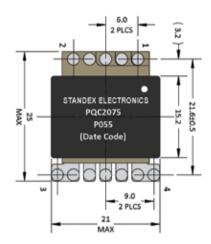
1) PATENTED HEADER AND SURFACE MOUNT TERMINATIONS PROVIDE REPEATABLE CO-PLANARITY FOR MANUFACTURING 2) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

ELECTRICAL SPECIFICATIONS

SIZE 025 10W-50W

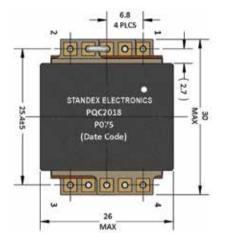
DESIGN EXAMPLE

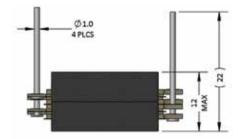

Topology	Forward w/active rest
Input Voltage	36-72VDC
Output Power	50W
Rated Current From Ns1 Output	15A
Rated Current From Naux Output	0.5A
Switching Frequency	300kHz
Turns Ratio - Np/Ns/Naux	12T/2T/8T
Duty Cycle At Low Input Voltage Max.	61%
Operating Ambient Range (Full Load)	-40° C to +85° C
Minimum Inductance	248µH


Minimum Efficiency At Nominal Input Temp. Rise Hot Spot Ambient Minimum Isolation Voltage	97.50% +45°C	-
Primary And Aux To Secondary Primary And Aux To Core Primary To Aux Secondary To Core	1500VDC 1500VDC 200VDC 200VDC	
Leakage Inductance Typ. Weight Range (Approximate)	0.75µH 12-50grams	

NOTES:

1) PATENTED HEADER AND SURFACE MOUNT TERMINATIONS PROVIDE REPEATABLE CO-PLANARITY FOR MANUFACTURING 2) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE


TRANSFORMER DESIGN | EXAMPLE - PQC2075

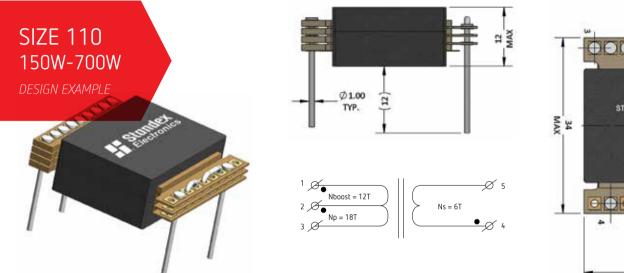

Topology	Continuous Flyback
Input Voltage (100 VDC Nominal)	93-105VDC
Output Power (Output Voltage/Current After Rectification)	36W (12V/3A)
*Surge Output Power	60W (12V/5A)
* 5 Sec., Once An Hour Or Less Frequency	
Turns Ratio - Np/Ns	8 : 1
Switching Frequency	150kHz
Duty Cycle, Max. At Low Input Voltage	53.0%
Efficiency At Vin=100VDC/36W Output Calc.	97.2% (1W losses)
Operating Ambient Range (Full Load)	-11°C to +70°C

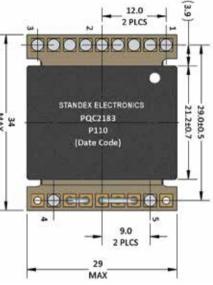
Temp. Rise, Natural Cooling 36W, Max.	+35°C	1
Minimum Isolation Voltage		-
Primary To Secondary And Core	1000VDC	-
Secondary To Core	500VDC	-
Primary Inductance, Np, Typ.	200µH±5%	-
Primary Resistance, Rdc, Np, Max.	470m0hm	ŀ
Secondary Resistance, Rdc, Ns, Max.	5m0hm	
Leakage Inductance 1-2/3-4 Shorted, Typ.	5µH	
(Secondary Shorted With Low Impedance Jumper)		
Weight Range (Approximate)	12-50grams	

NOTES:

 CUSTOM THROUGH HOLE FLYBACK DESIGN
 PATENTED SURFACE MOUNT HEADER AVAILABLE
 THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

SIZE 075 100W-500W DESIGN EXAMPLE


TRANSFORMER DESIGN | EXAMPLE - PQC2018


S	Tapology	Forward
ELECTRICAL SPECIFICATIONS	Input Voltage	47-100VDC
	Output Power (Output Voltage/Current After Rectification)	100W/(20VDC/5A)
	Turns Ratio - Np/Ns	10T/10T
	Switching Frequency	150kHz
	Duty Cycle at Vin=47V, 1V Output Diode Drop	45.0%
	Duty Cycle at Vin=100V, 1V Output Diode Drop	21.0%
	Efficiency At Full Power Calculated	98.2% (1.8W losses)
ш	Ambient Temp, Max.	+70°C

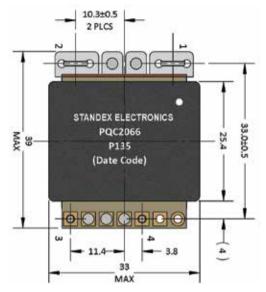
Temp. Rise, Hotspot External Heatsink, Max.	+40.5°C	
Minimum Isolation Voltage		
Primary To Core	500VDC	
Secondary To Primary And Core	1500VDC	
Primary Inductance, Np, Min.	250µH	
Primary Resistance, Np, Max.	25m0hm	
Secondary Resistance, Ns, Max.	30m0hm	
Leakage Inductance 1-2/3-4 Shorted, Typ.	0.4µH	
Weight Range	20-70grams	

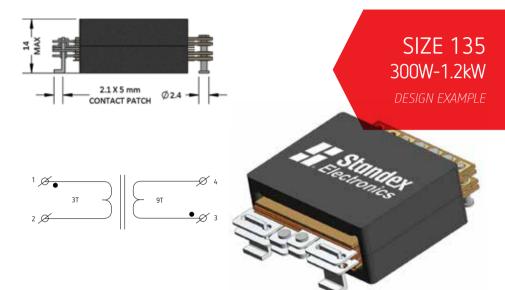
NOTES:

 CUSTOM THROUGH HOLE FORWARD DESIGN
 PATENTED SURFACE MOUNT HEADER AVAILABLE
 THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

TRANSFORMER DESIGN | EXAMPLE - PQC2183

Topology	Boost Forward
Input Voltage	120-150VDC
Output Power (Output Voltage/Current After Rectification)	200-300VDC/500-250mA
Output Power (Output Voltage/Current After Rectification) Ns1	0-30VDC/4A
Turns Ratio - Np/Nboost/Ns	18T/12T/6T
Switching Frequency	250kHz
Duty Cycle, Max. At Low Input Voltage	60.0%
Efficiency At Full Power Calculated	98.3% (2.5W losses)
Ambient Temp, Max.	-55°C to +85°C
Mounted On Heatsink With Max. Temp.	+65°C


Temp. Rise, Hotspot Ext. Heatsink, Max.	+25°C				
Minimum Isolation Voltage					
Pri. To Secondary Ns1 And To Core	1000VDC				
Secondary To Core	500VDC				
Primary Inductance, Np, Min.	900µH				
Primary Resistance, Rdc, Np, Max.	140m0hm				
Secondary Resistance, Rdc, Ns, Max.	18m0hm				
Boost Winding Resistance, Rdc, Nboost, Max.	80m0hm				
Leakage Inductance 2-3/4-5 Shorted, Typ.	2µH				
Weight Range (Approximate)	30-120grams				


NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY
 CONDUCTIVE SUBSTRATE BETWEEN FERRITE &
 HEATSINK SHOULD BE UTILIZED
 2) PATENTED SURFACE MOUNT HEADER AVAILABLE
 3) HEATSINK & THERMAL SOLUTIONS AVAILABLE

ELECTRICAL SPECIFICATIONS

22

TRANSFORMER DESIGN | EXAMPLE - PQC2066

S	Topology	Full Bridge ZVS
NOI	Input Voltage	42-56VDC
SPECIFICATIONS	Output Power (Output Voltage/Current After Rectification)	120VDC/3.5A (420W)
E	Turns Ratio - Np/Nboost/Ns	3T/9T
SPE	Switching Frequency	200kHz
SAL	Duty Cycle, Max. At Low Input Voltage	97.0%
ELECTRICAL	Efficiency At Full Power Calculated	98.95% (4.4W losses)
Ш	External Ambient Temp, Max.	+35°C
ш		

Temp. Rise, Hotspot Ambient, Max.	+58°C	N
Minimum Isolation Voltage		1)
Primary To Secondary	2121VDC	
Secondary To Core	500VDC	Н
Primary Inductance, Np, Min.	27µH	2)
Primary Resistance, Np, Max.	1.8m0hm	Z,
Secondary Resistance, Ns, Max.	16m0hm	
Leakage Inductance 1-2/3-4 Shorted, Typ.	50nH	
Weight Range	50-150grams	

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) HEATSINK & THERMAL SOLUTIONS AVAILABLE

Standex | Smart.

MID POWER // 1kW-10kW

"Meets Critical Power Demands For EV Fast Charging"

C ize 220, 350, and 560 are ideally suited for mid power applications with an optimal power range of \bigcirc 1kW-10kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range:	1kW - 10kW
Current Rating Max.:	45-72A (+30% for THT
Optimum Frequency Range:	40 - 250kHZ

Optimum Frequency Range:

Mounting Options:

Through-Hole (THT)

Topologies:

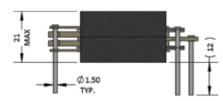
Full Bridge, Full Bridge (ZVS), Half Bridge, Half Bridge (ZVS), Push-Pull, Resonant

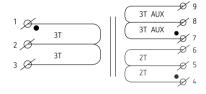
Typical Dimensions:

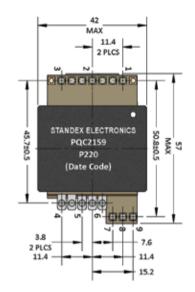
L	W	Н
45-72mm	41-64mm	18-31mm

Length (L) May Vary Depending On Terminals Height (H) Depending On Input & Output Requirements

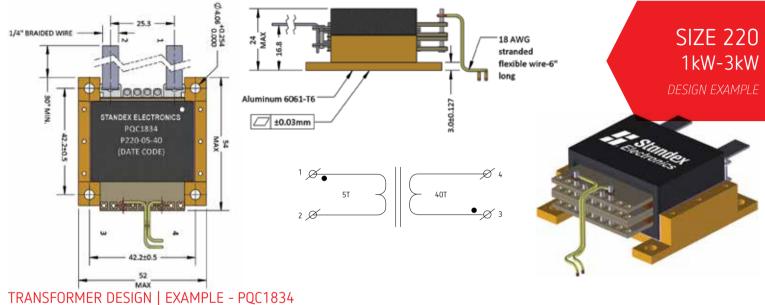
APPLICATIONS


- Fast Charging
- Automotive, Electric & Hybrid Vehicles
- Renewable Energy
- Aerospace & Military (high reliability & repeatability)
- Welding, Lasers, & Test Equipment
- DC-DC Converters
- AC-DC resonant designs
- Battery Management Systems
- Switch Mode Power Supplies
- Distributed Isolated Powe


CUSTOMER CONFIGURATIONS


- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Value-added assemblies

That's **Standex |S**mart.

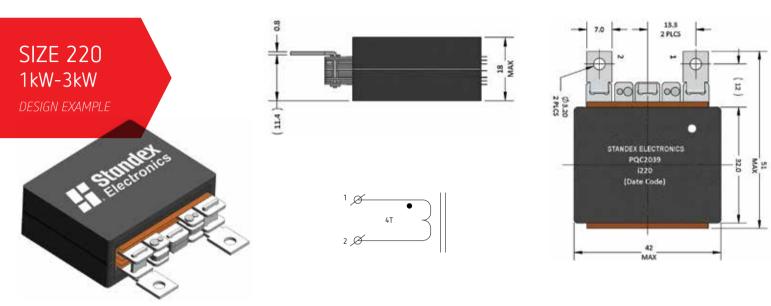

TRANSFORMER DESIGN | EXAMPLE - PQC2159

Topology	Push Pull
Input Voltage	23-125VDC
Output Power (Output Voltage/Current After Rectificatio	in)
Ns1+Ns2 (320W Nom. Power)	13VDC/24.6A
Naux1+Naux2	16VDC/0.04A
Turns Ratio - Np1/Np2/Ns1/Ns2/Naux1/Naux2	3T/3T/2T/2T/3T/3T
Switching Frequency	70kHz
Duty Cycle, Max. Vin=23VDC	88.0%
Efficiency At Full Power (Calc.)	99% (3.2W losses)
Mounted On Heatsink With Max. Temp.	+90°C

Temp. Rise Hot Spot External Heatsink, Max.	+30°C
Minimum Isolation Voltage	
Primary To Core, Secondary Ns1 And Naux1	1500VAC
Secondary Ns1 To Core	500VDC
Naux To Core	1500VAC
Primary Inductance, Np1 And Np2, Min.	45µH
Primary Resistance, Rdc, Np1 And Np2, Max.	2.5m0hm
Secondary Resistance, Rdc, Np1 And Np2, Max.	1.2m0hm
Leakage Inductance Np1+Np2/Ns1+Ns2 Shorted, Typ.	150nH
Weight Range	100-250grams

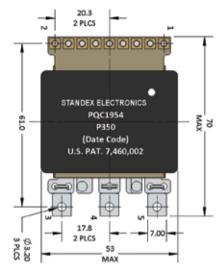
NOTES:

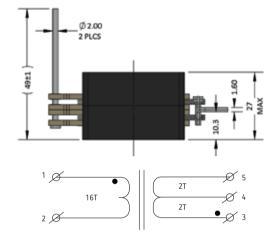
 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SHIELD-ING ON HIGH CURRENT WINDING

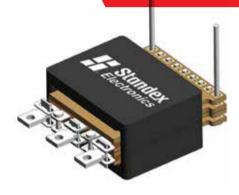

TRANSFORMER DESIGN | EXAMPLE - PQUI

Тороlоду	Full Bridge ZVS
Input Voltage	350-450VDC
Output Power (Output Voltage/Current After Rectification)	800W (320VDC/2.5ADC)
Turns Ratio - Np/Ns	5T/40T
Switching Frequency	100kHz
Duty Cycle, Max. 2.5A Operation	88%
Efficiency At Full Output 2.5A Operation (Calc.)	99.25% (6W losses)
External Heatsink Temperature Max.	+90°C
Temp. Rise Hot Spot External Heatsink, Max.	+20°C (2.5A operation)
Transformer Clamped To Heatrick	

Minimum Isolation Voltage	
Primary To Secondary And Core	1000VAC
Primary To Core	500VAC
Primary Inductance, Np, Min.	150µH
Primary Resistance, Np, Max.	2m0hm
Secondary Resistance, Max.	200m0hm
Leakage Inductance 3-4/1-2 Shorted, Typ.	8.0µH
Leakage Inductance 1-2/3-4 Shorted, Typ.	125nH
Weight Range	100-250grams

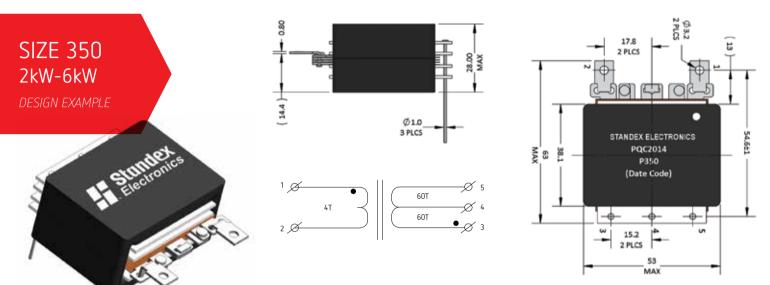

NOTES:


1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SHIELD-ING ON HIGH CURRENT WINDING


INDUCTOR DESIGN | EXAMPLE - PQC2039

SNC	Inductance At Rated Current	2.4µH ±3%	Temp. Rise Hot Spot External Heatsink, Max.	+40°C	NOTES:
PECIFICATIO	Rated Current	100A	Heatsink Temperature Max.	+65°C	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
TRICAL SI	Ripple Frequency	150kHz	Resistance Max.	1m0hm	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
ELEC	Minimum Isolation Voltage (Winding To Core)	2000VDC	Total Losses	10W	

SIZE 350 2kW-6kW


TRANSFORMER DESIGN | EXAMPLE - PQC1954 (U.S. PAT. 7,460,002)

	Topology	Full Bridge ZVS
NS	Input Voltage	350-750VDC
ATIO	Output Power (Output Voltage/Current After Rectification)	2.5kW typ. 3kW surge
ЪС,	Output Power (Output Voltage/Current After Rectification)	28.4VDC/83A, 100A surge
ELECTRICAL SPECIFICATIONS	Turns Ratio - Np/Ns	16/2+2T
IS I	Switching Frequency	100kHz
SICA	Duty Cycle At Low Input	80.0%
Ľ.	Efficiency At Full Power (Calculated)	99.1% (21W losses)
ELE	Baseplate / Heatsink Temperature Max.	+85°C
	Mounted On Heatsink With Max. Temp.	+90°C

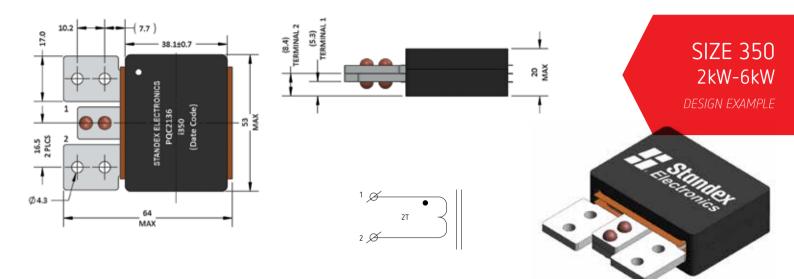
Temp. Rise Hot Spot Baseplate, Max.	+21°C
Minimum Isolation Voltage	
Primary To Secondary And Core	2500VAC for 1min
Secondary To Core	500VDC
Primary Inductance, Np, Min.	1792µH
Primary Resistance, Rdc, Np, Max.	22m0hm
Secondary Resistance, Rdc, Ns, Max.	1m0hm (0.5+0.5m0hm)
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	1.5µH
Weight Range	150-400grams

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING

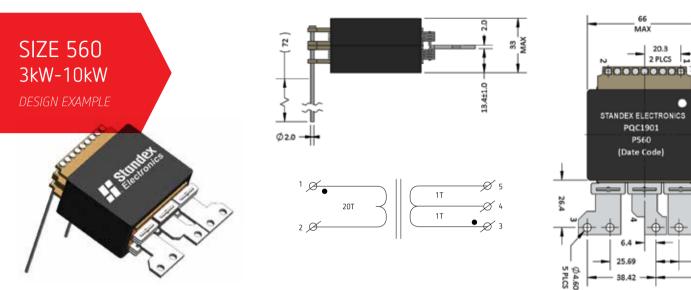
TRANSFORMER DESIGN | EXAMPLE - PQC2014

z	
ō	
F	
◄	
C	
Ē	
-	
ш	
Ē	
S	
_	
◄	
<u>ت</u>	
~	
F	
Ú	
ш	


S

Topology	Full Bridge ZVS
Input Voltage	110-150VDC
Output Power (Output Voltage/Current After Rectification)	3100VDC/0.5A (1.55kW max)
Turns Ratio Np / Ns1 + Ns2	4T/60T + 60T
Switching Frequency	100kHz
Duty Cycle At 150 VDC	95%
Efficiency At Full Power (Calculated)	99.3% (11W losses)
Ambient Temperature Max.	+20°C
Airflow Temperature, Speed (Recommended)	50CFM

Temp. Rise Hot Spot Heatsink, Max.	+53°C
Minimum Isolation Voltage	
Primary To Core	500VAC
Secondary To Primary And Core	3000VDC
Primary Inductance, Np, Min.	100µH
Primary Resistance, Np, Max.	2m0hm
Secondary Resistance, Ns1 or Ns2, Max.	800m0hm
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	0.2µH
Weight Range	150-400grams


NOTES:

 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING

INDUCTOR DESIGN | EXAMPLE - PQC2136

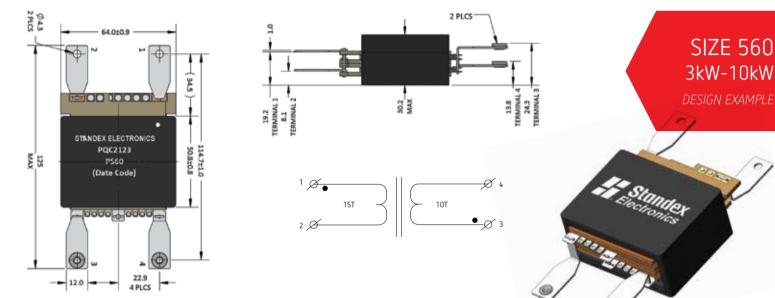
SNC	Inductance At Rated Current	0.5µH ±3%	Temp. Rise Hot Spot Baseplate (Heatsink Cooling), Max.	+40°C	NOTES:
ECIFICATIO	Rated Current (Ave. ±12.5A Ripple)	250A	Heatsink Temperature Max.	+65°C	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
RICAL SPI	Ripple Frequency	200kHz	Resistance Max.	0.2m0hm	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
ELECT	Minimum Isolation Voltage (Winding To Core)	500VDC	Total Losses	18.4W	

TRANSFORMER DESIGN | EXAMPLE - PQC1901 (U.S. PAT. 7,460,002)

Topology	Half Bridge ZVS
Input Voltage	800VDC
Output Power (Output Voltage/Current After Rectification)	6144W Max. (24VDC/256A)
Turns Ratio - Np/Ns	20T/1T + 1T
Switching Frequency	50kHz
Duty Cycle, Max.	100%
Efficiency At Full Power (Calculated)	99.24% (47W Losses)
Ambient Temp. Max. (Transfer clamped to heatsink)	+85°C
*Heatsink Provided By Customer	

Temperature Rise Hot Spot Heatsink, Max.*	+37.6°C
Minimum Isolation Voltage	
Primary To Secondary And Core	3000VDC
Secondary To Core	500VDC
Primary Inductance, Np, Min.	4000µH
Primary Resistance, Np, Max.	30m0hm
Secondary Resistance, Ns, Max.	0.25m0hm
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	ЗµН
Weight Range	650-700grams

NOTES:


 1) FOR OPTIMAL PERFORMANCE A THERMALLY
 CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND
 HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING
 3) CUSTOM TERMINALS CAN BE DESIGNED AND
 OPTIMIZED

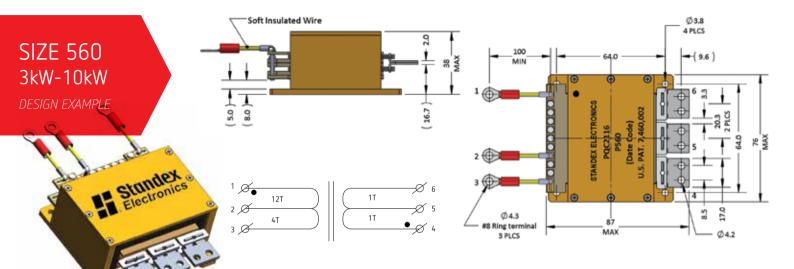
87.4±0.5

12.96

25.69

ELECTRICAL SPECIFICATIONS

TRANSFORMER DESIGN | EXAMPLE - PQC2123


Тороlоду	Full Bridge ZVT
Input Voltage	760-840VDC
Output Power (Output Voltage / Current After Rectification)	12kW max. (500VDC/24ADC)
Output Power (Output Voltage / Current After Rectification)	28.4VDC/83A, 100A Surge
Turns Ratio - Np/Ns	15T/10T
Switching Frequency	100kHz
Duty Cycle At Low Input Voltage Max.	99.0%
Efficiency At Full Power (Calculated)	99.3% (87.4W Losses)
External Heatsink Temperature Max.	+45°C
*Heatsink Provided By Customer	

Temp. Rise Hot Spot External Heatsink*, Max.	+69.9°C
Minimum Isolation Voltage	
Primary To Secondary And Core	5700VAC for 1sec
Secondary To Core	2850VAC for 1sec
Primary Inductance, Np, Min.	600µH
Primary Resistance, Rdc, Np, Max.	20m0hm
Secondary Resistance, Rdc, Ns, Max.	18mOhm
Leakage Inductance 1-2/3-4 Shorted, Typ.	1.8µH
Weight Range	300-800grams

NOTES:

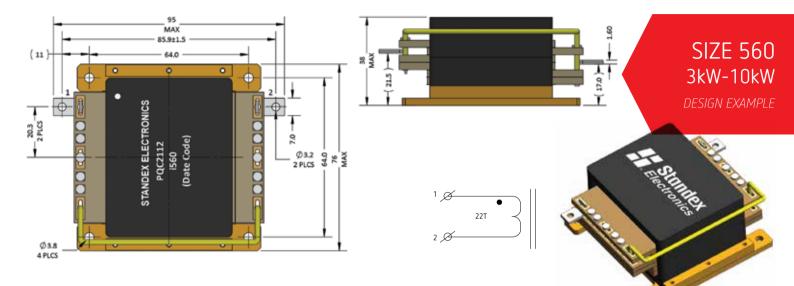
1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED 2) PATENTED TERMINALS AVAILABLE FOR SPLIT-TING HIGH CURRENT WINDING 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

"Complex problems deserve custom solutions" Submit Your Design! | standexelectronics.com/planar-transformer-request-form/

TRANSFORMER DESIGN | EXAMPLE - PQC2116

Topology	Full Bridge ZVS
Input Voltage Np1 = 12 Turns (1-2)	350-630VDC
Input Voltage Np2 = 16 Turns (1-3)	500-820VDC
Output Power (Output Voltage/Current After Rectification)	28VDC/250A (7kW)
Turns Ratio - Np1/Np2/Ns1/Ns2	12T/16T/1T/1T
Switching Frequency	100kHz
Duty Cycle, At Vin=350VDC Max.	99%
Efficiency At Full Power (Calculated)	99.2% (55W losses)
External Heatsink Temperature Max.	+65°C
*Transformer Clamped To Heatsink	

Temp. Rise Hot Spot External Heatsink*, Max.	+44°C
Minimum Isolation Voltage	
Primary To Secondary And Core	2700VAC
Secondary To Core	500VDC
Primary Inductance, Np1 (1-2)/Np2 (1-3), Min.	1440/2560µH
Primary Resistance, Rdc, Np,1 (1-2)/Np2 (1-3), Max.	14/18m0hm
Secondary Resistance, Rdc, Ns1 + Ns2, Max.	0.3m0hm
Leakage Inductance 1-2/Sec. Shorted, Typ.	900nH
Leakage Inductance 1-3/Sec. Shorted, Typ.	1800nH
Weight Range	300-800grams


NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED

2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

"Complex problems deserve custom solutions" Submit Your Design! | standexelectronics.com/planar-transformer-request-form/

INDUCTOR DESIGN | EXAMPLE - PQC2112 (U.S. PAT. 7,460,002)

SNO	Inductance At Rated Current	100µH ±10%	Temp. Rise Hot Spot Baseplate, Max.	+46°C	
ECIFICATI	Rated Current (Ave. ±12.5A Ripple)	32ADC +3App	Heatsink Temperature Max.	+55°C	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
TRICAL SP	Ripple Frequency	100kHz	Resistance Max.	22m0hm	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
ELEC	Minimum Isolation Voltage (Winding To Core)	2500VDC	Total Losses At Max. Current	28.7W	3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

Standex | Strong.

HIGH POWER // 10kW-250kW

"Renewable Energy"

C ize 900, 2100, and 4000 are ideally suited for high power applications with an optimal power range \bigcirc of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range:	10kW - 250kW
Current Rating Max.:	500A (+30% for THT)
Optimum Frequency Range:	40 - 125kHZ

Optimum Frequency Range:

Mounting Options:

Through-Hole (THT)

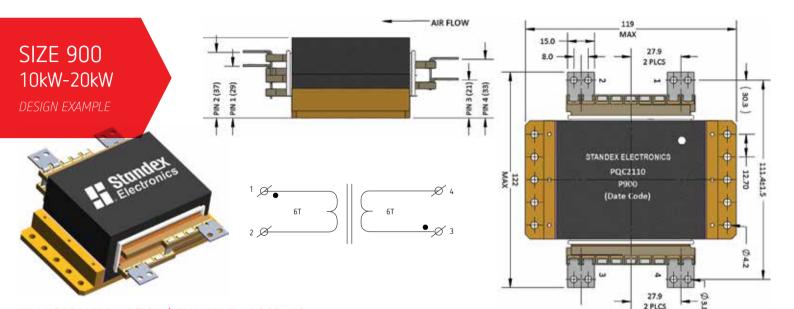
Topologies:

Full Bridge, Full Bridge (ZVS), Half Bridge, Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:

Length (L) May Vary Depending On Terminals Height (H) Depending On Input & Output Requirements

APPLICATIONS


- Fast Charging
- Electric & Hybrid Transportation
- Renewable Energy Wind & Photovoltaic Systems
- Aerospace & Military (high/repeat reliability)
- Welding, Lasers, & Test Equipment
- DC-DC Converters
- AC-DC resonant designs
- Switch Mode Power Supplies
- Distributed Isolated Power
- Grid Energy Storage

CUSTOMER CONFIGURATIONS

- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Value-added assemblies

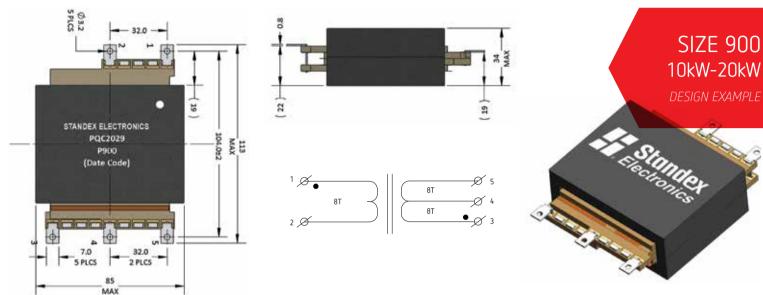
That's **Standex** | Strong.

standexelectronics.c

TRANSFORMER DESIGN | EXAMPLE - PQC2110

z
0
F
~
G
≝_
0
ш
~
S
_
~
0
Ξ.
Ŷ
5
Ш
H

S

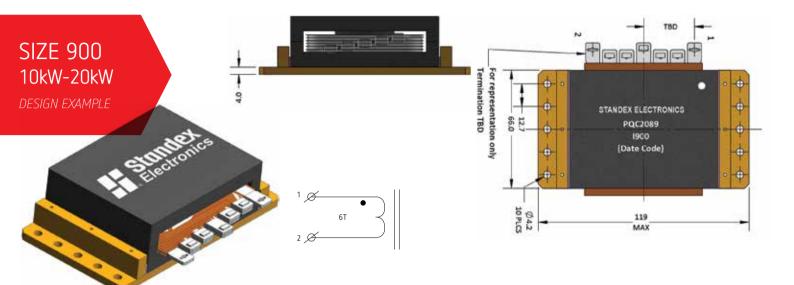

Topology	LLC Resonant
Input Voltage	350-450VDC
Output Power (Output Voltage/Current After Rectification	n) 24kW ave. (400VDC/60ADC)
Turns Ratio - Np/Ns	6T to 6T
Switching Frequency	100kHz
Duty Cycle At 410VDC Input, Max.	98%
Max. Efficiency 24kW Output & Vin=410VDC	99.59% (99W losses calc.)
Ambient Temperature Max.	+65°C
External Heatsink Temperature Max.	+60°C
Temp. Rise Hot Spot Baseplate*, Max.	+59°C

*Airflow Of Cooling Fan (Required)	50CFM			
Minimum Isolation Voltage				
Primary To Secondary And Core	4000VAC			
Secondary To Core	4000VAC			
Primary Inductance, Np, Min.	540µH			
Primary Resistance, Rdc, Np, Max.	1.5m0hm			
Secondary Resistance, Rdc, Ns, Max.	3m0hm			
Leakage Inductance 1-2/3-4 Shorted, Typ.	220µH			
Weight Range	800-1600grams			

NOTES:

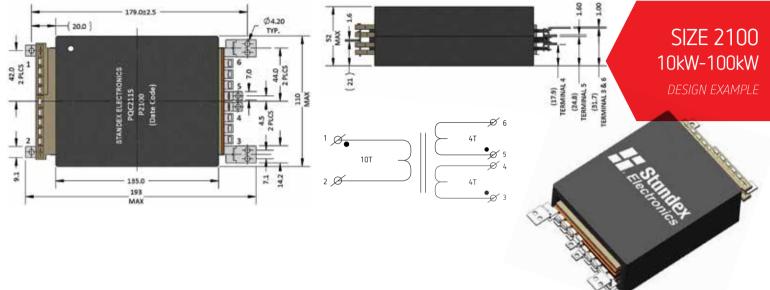
1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING 2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY

3) MULTI LAYER PCB'S REDUCE AC LOSSES


TRANSFORMER DESIGN | EXAMPLE - PQC2029

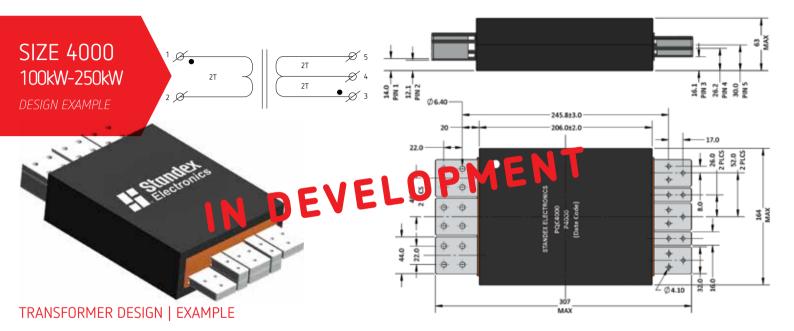
Topology	LLC Resonant
Input Voltage	400VDC
Output Power (Output Voltage/Current After Rectification)	10kW max. (400VDC/25ADC)
Secondary Current Nom. Rms Half Sec. Current	19A RMS sinusoidal
Turns Ratio - Np/Ns1+Ns2	8T/8T + 8T
Switching Frequency	100kHz fixed
Duty Cycle Max.	100% (50% + 50%)
Efficiency At Full Power (Calculated)	99.5% (50W losses)
External Heatsink Temperature Max.	+80°C
Temp. Rise Hot Spot External Heatsink*, Max.	+25°C

Minimum Isolation Voltage	
Primary To Secondary	2500VAC for 1min
Primary To Core	2500VAC for 1min
Secondary To Core	2500VAC for 1min
Primary Inductance, Np, Min.	1000μΗ
Primary Resistance, Np, Max.	5m0hm
Secondary Resistance, Ns, Max.	10m0hm
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	0.7µH
Weight Range	800-1600grams


NOTES:

 1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING
 2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY
 3) MULTI LAYER PCB'S REDUCE AC LOSSES

INDUCTOR DESIGN | EXAMPLE - PQC2089


SNO	Inductance At Rated Current	12µH	Temp. Rise Hot Spot Baseplate, Typ.	+19°C	NOTES:
PECIFICATI	Rated Current	120ADC	Heatsink/Baseplate Temperature Max.	+70°C	1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING 2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC
TRICAL SI	Ripple Frequency	100kHz	Resistance Max.	2m0hm	FLUX DENSITY
ELEC'	Minimum Isolation Voltage (Winding To Core/Heatsink)	500VDC	Total Losses At Max. Current (Estimated Calc.)	25W	

TRANSFORMER DESIGN | EXAMPLE - PQC2115

Topology	LLC ZVS Converter
Input Voltage	730-880VDC
Output Power (Output Voltage/Current After Rectification	on)60kW max. (400VDC/75A)
Secondary Current Nom. Rms Half Sec. Current	19A RMS sinusoidal
Turns Ratio - Np/Ns1/Ns2	10T/4T/4T
Switching Frequency	80kHz (60-104kHz range)
Duty Cycle At Vin=800V Vout=400V, Max.	99% after rectification
Efficiency At Full Power (Calculated)	99.5% (150W losses)
External Heatsink Temperature Max.	+65°C
Ambient Temperature	+45°C

Temp. Rise Hot Spot Ambient Max. (Transformer Clamped To Heatsink)	+45°C	NOTES:
Minimum Isolation Voltage		1) INDUSTRY BEST FORM FACTOR TO POWER
Primary To Secondary	1750VAC	RATIO
Primary And Secondary To Core	2000VAC	2) INHERENT ISOLATION DUE TO PCB
Primary Inductance, Np, Min.	39µH ±5%	WINDINGS
Primary Resistance, Rdc, Np, Max.	3m0hm	
Secondary Resistance, Rdc, Ns1 or Ns2, Max.	2m0hm	3) UNIQUE TERMINATION OPTIONS
Leakage Inductance 1-2/Secondary Shorted, Typ.	0.5µH	AVAILABLE FOR CUSTOMIZATION
Thermal Impedance - Hotspot External Heatsink	0.3°C/W	4) MULTI LAYER PCB'S REDUCE AC LOSSES
Weight (Approximate)	2000grams	

Topology	Full Bridge ZVS
Input Voltage	450-800VDC
Output Power (Output Voltage/Current After Rectification)	250kW max. (400VDC/625A)
Turns Ratio - Np/Ns1/Ns2	2T/2T/2T
Switching Frequency	50kHz
Duty Cycle At Low Input Voltage Max.	89.1%
Efficiency At Full Power (Calculated)	99.6% (855W losses)
*External Heatsink Temperature Max.	+40°C
Ambient Temperature Max.	+40°C

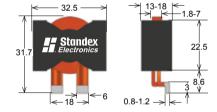
Temp. Rise Hot Spot Ambient External Heatsink*, Max.	+85.4°C	NOTES:
Minimum Isolation Voltage Primary To Secondary Primary And Secondary To Core Primary Inductance, Np. Min.	2000VAC 2000VAC TBD	1) INDUS RATIO 2) INHER
Primary Resistance, Np, Max. Secondary Resistance, Ns1 + Ns2, Max. Leakage Inductance 1-2/3-4-5 Shorted, Typ. Weight (Approximate)	0.17m0hm 0.4m0hm 16nH 2000grams	WINDING 3) UNIQU AVAILAB

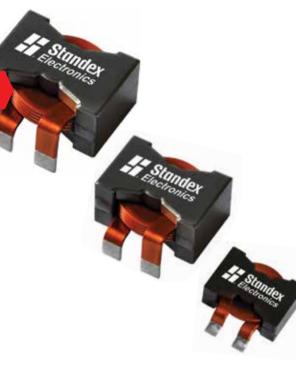
) INDUSTRY BEST FORM FACTOR TO
ATIO
) INHERENT ISOLATION DUE TO PCB

DINGS

NIQUE TERMINATION OPTIONS ABLE FOR CUSTOMIZATION

FACTOR TO POWER


PQ SERIES INDUCTORS // 0.9-6.0µH, 80A Max


"Fixed Power Inductors"

Size PQ32 fixed power inductors w/ferrite core are used in switching power supplies, DC/DC converters, FPGA and low/high profile current, high current POL converters, feedback control, overload sensing, load drop and shut down detection.

PQ32 (SMD/THT)

Inductance at Rated Current:	0.9 - 6.0 µH
Rated Current Typ.:	45 -60 A
Height Max.:	11 - 18 mm
Mounting Options:	31.7 x 32.5 mm

CUSTOMER CONFIGURATIONS

- 1. Core style and size
- 2. Typical height in mm
- 3. Min. inductance in " μ H", "R" = decimal point
- 4. Typical Amp rating
- 5. Terminal style "G" = SMT, "T" = Through hole tabs
- 6. Optional packaging "R" = Tape & Reel

Standex Electronics Worldwide Headquarters 4538 Camberwell Road Cincinnati, OH 45209 USA Standex Americas (OH) +1.866.STANDEX (+1.866.782.6339) info@standexelectronics.com

Meder Americas (MA) +1.800.870.5385 salesusa@standexmeder.com Northlake Americas (WI) +1.262.857.9600 sales@northlake-eng.com Standex-Meder Europe (Germany) +49.7731.8399.0 info@standexmeder.com Standex-Meder Asia (Shanghai) +86.21.37606000 salesasia@standexmeder.com Standex Electronics Japan (Kofu) +81.3.6864.0670 sej-sales@standex.co.jp

standexelectronics.com