

Reed Relays Overview

Product Training Module

Introduction

Purpose

Explore the Reed Relay technology

Objectives

- Define key terms
- Describe the reed relay's structure and function
- Describe the applications where reed relays are used

Coil

- Made up of many turns of copper insulated wire
- When a current is applied to the coil, a magnetic field is generated
- When energized, its magnetic field operates the contacts

Operation

The process of closing the reed switch contacts

Deactivation

The process of opening the contacts

The Reed Switch

- The 'heart' of a reed relay
- Composed of two or more nickel/iron leads within a hermetically sealed glass envelope.
- The inner ends of the leads have plated or sputtered metallization

Pull-in and Drop-out voltage

The pull-in voltage is that point where the contacts close; the dropout voltage is that point where the contacts open

Coil resistance

■ The resistance of the copper wire making up the coil.

Hysteresis

Is the ratio of the drop-out voltage and the pull-in voltage (drop-out/pull-in)

Switching voltage

The maximum voltage capable of being safely switched

Breakdown voltage

The minimum voltage which assures no voltage breakdown or arc-over will not occur.

Insulation resistance

Is the resistance across the contacts and/or the resistance between the coil and the contacts

Dynamic contact resistance

The method of testing the reed switch dynamically.

Dynamic Contact Resistance (DCR)

- □ Contacts are shown in the open state
- When the reed contacts close, they do so with a certain momentum. That momentum makes the reeds vibrate in a simple critically damped harmonic motion.
- Critically damped harmonic motion is an important concept in our DCR testing.
- The frequency of the harmonic motion is determined from the geometry of the reed switch

Reed Switch Movement After Closure

Contact movement after closure is shown

DCR Parameters

This movement is occurring in the magnetic field generated by the coil

- When a metal is in motion in a magnetic field a current will be induced in the metal
- This current is a critical part of the measurement of our Dynamic Contact Resistance

DCR Testing

Voltage is applied to the coil 100 times per second.

- Operating at these speeds the mechanical dynamics are being pushed to their upper limits
- The DCR is like an electrical microscope looking at the mechanical system
- The DCR will expose any flaws in the mechanical system

Dynamic Contact Resistance

Dynamic Contact Resistance

Dynamic Contact Resistance

Excessive Contact Wavering

Excessive Dynamic Noise

Excessive Bounce Time

DCR Summary

- Any net force on the reed switch capsule can shorten the life of the reed relay.
- Any slight crack on the glass capsule will drastically reduce life.
- Not testing a reed relay for DCR may result in shortened life in the customer's electronic equipment.

Reed Relay Types

Types	Definition	
Contact, Form A	A single pole single throw (SPST) normally open (N.O.) switch	
Contact, Form B	A single pole single throw (SPST) normally closed (N.C.) switch	

Reed Relay Types

Types	Definition
Contact, Form C	Consists of three reed blades. A normal open contact (NO), A normally closed (NC), and a common contact (C). Also called a single pole double throw (SPDT)
Contact, Form E (Latching Relay)	A relay that maintains its contacts in the last assumed position without coil energization. To change the state of the contacts, the magnetic field must be reversed.

- Capable of switching into the Billions of operations
- The only technology capable of switching zero voltage and current
- □ Capable of switching up to 15,000 volts

- Only 100 fempto-farads across the open contacts
- □ Insulation resistance greater than 10 tera-ohms.
- Contact resistance typically 50 milli-ohms

- Very high pulsed currents up to 25 amps possible
- □ Capable of carrying signals up to 20 GHz
- □ Capable of operating under 100 micro-seconds
- Capable of operating in temperature extremes from -55°C to 100°C

- Very small sizes as well as surface mounting available
- □ Large assortment of package sizes
- □ UL, CSA, VDE, etc. listed reed relays

Automated Test Equipment (ATE)

Applications	Characteristics
 Automotive Diagnostic Test Systems Functional PCB tester Integrated circuit tester Memory and VLSI tester Printed circuit board (PCB) tester Wafer testers 	 High frequency path Ability to handle fast digital pulses 50 Ω impedance High signal isolation > 1 TΩ Capacitance < 0.1 pico-farads

Automated Test Equipment (ATE)

Applications	Characteristics
Discrete semiconductor testersPower component testers	Very small sizeSurface mount

Automated Test Equipment (ATE)

Applications	Characteristics
Cable testers	 Very high switching voltage > 10kV Very high voltage isolation > 15kV High pulsed currents > 40 amps

Instrumentation

Applications	Characteristics
 Data acquisition testing Electrometers Printers Medical cauterizing generators Medical test systems Multimeters RF switching and transmitting Scanners/Multiplexers 	 Ability to switch and carry very low voltages < 10 nano-volts Carry 10 Amps on a continuous basis at 2 MHz Ability to discern signal levels < 1 pico-amp

Telecommunications

Applications	Characteristics
 Modems AC Line switching and Line sensing Pager Transmit/Receive switching Cellular antenna switching 	 Ability to switch millions of operations Ability to switch the AC Line Ability to switch digital signals in the 1-5 GHz in transmit/receive circuits

Other Reed Relay Applications

A	oplications	Characteristics
•	Security Battery powered instrumentation Industrial and Robotics Explosion proof or intrinsic safety circuit applications	 Capable of switching into the billions of operations The only technology capable of switching zero voltage and current Only 100 fempto-farads across the open contacts Insulation resistance > 10 TΩ Contact resistance typically 50 mΩ

Summary

- Hermetically sealed reed relays are used where other technologies simply don't meet the requirements
- The reed relay's isolation and ability to handle fast digital pulses
- Proper reed relay dynamic testing insures long life

PARTNER | SOLVE | DELIVER

For more information on our capabilities, and how we can partner, solve, and deliver to your needs, please visit us at <u>www.standexmeder.com</u>

