

- Standex Electronics

PARTNER | SOLVE | DELIVER

Reed Relays \& Optocouplers

PRODUCT LINE BROCHURE

Standex \mid Smart.

Partner, Solve, Deliver® "Solving your complex problems is why we exist."

CONTENTS

03 About Standex
06 Our Capabilities
08 Our Approach \& Process
10 Reed Relay Technology
14 Battery Management Systems
16 Reed Relay Selection Guide
26 Optocoupler Selection Guide
32 Ecars \& Alternative Energy
34 Test \& Measurement
36 Medical
38 Intrinsically Safe

ABOUT STANDEX

Customer Focused Engineering Solutions. "Innovating for more than 50 years."

The Standex Electronics business, a division of Standex International Corporation (NYSE:SXI), has been providing solutions through high-performing products since the 1950's. Through growth, acquisition, strategically partnering with customers, and applying the latest engineering designs to the needs of our ever-changing world, Standex Electronics technology has been providing quality results to the end-user. The approach is achieved by partnering with customers to design and deliver individual solutions and products that truly address customers' needs.

Standex Electronics is headquartered in Cincinnati, Ohio, USA, Standex Electronics has nine manufacturing facilities in six countries, located in the United States, Germany, China, Mexico, the United Kingdom, and Japan.

That's Standex \mid Smart.

WHO WE ARE / WHERE WE PLAY

Powerfully transforming. "When failure is not an option, designers of critical electronic components rely on Standex and their decades of experience."

standex Electronics is a worldwide market leader in the design, development and manufacture of custom magnetics and power conversion components and assemblies. Our work, growth, and dedication to providing reliable high-quality products through our engineering and manufacturing expertise go beyond products we ship.

We offer engineered product solutions for a broad spectrum of product applications in all major markets, including but not limited to:

- Aerospace \& Military
- Alternative Energy
- Automotive (EV) \& Transportation
- Electric Power \& Utilities
- Medical
- Smart Grid \& Metering
- Industrial \& Power Distribution
- Test \& Measurement
- Security \& Safety
- Household \& Appliances

Our values and what we believe align to the partner, solve, and deliver ${ }^{\circledR}$ approach. We produce parts but we are more than that. Connecting with your team as a strategic partner, listening to your challenges, and arriving at ways to solve your complex problems through our solutions are why we exist. We have custom capabilities that address your needs. Our team leverages our dynamic and diverse engineering expertise and other resources such as our global facilities for logistics and production.

Standex Electronics has been innovating for over 50 years by developing new products, partnering with customers, and expanding our global
capabilities. We have also grown our global reach and local touch through synergistic acquisitions.

1960 National Transistor 1969 Paul Smith Company
1960

1998 ATR Coil /
Classic Coil Winding
1990

2001 ATC-Frost Magnetics
2002 Cin-Tran
2003 Magnetico /Trans America
2004 Lepco
2008 BG Laboratories
2000

2012 Meder Electronic 2014 Planar Quality Corp. 2015 Northlake Engineering, Inc. ${ }^{\text {® }}$ 2017 OKI Sensor Device Corp. 2018 Agile Magnetics
2010

Magneico M7 C- FEOST

OUR CAPABILITIES

I AT F 16949

REGISTERED AS9100

MANUFACTURING

Automated Optical Inspection (AOI)
Auto AT Switch Sorting
SMT Line with Pick \& Place \& Reflow
Reed Switch Manufacturing
Reed Relay Design \& Manufacturing
Automatic CNC Winding \& Termination
Bobbin, Layer, \& Self-Supporting Winding
Thermoplastic \& Thermoset Overmolding
Wave \& Selective Soldering
Low Pressure (Hot Melt) \& Injection Molding Potting - 2 Component
Reflow Oven - Multiple Zone Convection
Stainless Steel, Metal \& Plastic Fabrication
Lean Manufacturing Principles
Complete, In-House Machine Shop

ENGINEERING

3-D CAD Modeling \& 3-D Printing
Mechanical Design \& Packaging
Rapid Prototyping
Magnetic Simulation Software
Mechanical, Thermal \& FEA Analysis
Plastic Mold Flow Simulation
APQP Project Management

QUALITY \& COMPLIANCE
AS9100, IS09001 \& IATF16949 Certifications
ITAR Compliance
Regulatory Agency Approvals
PPAP \& First Article Inspection
SPC Data Collection
RoHS, REACH, UL, AEC-Q200, ATEX \& IECEx

TESTING \& LAB CAPABILITIES

High Voltage / Partial Discharge Testing
Specialized Lab Testing Equipment: Network
Analyzers, Nanovoltmeters, Gauss / Teslameters,
Fluxmeters, Picoammeters
Full Load \& Temperature Rise Testing
2-D/3-D Microfocus X-ray Inspection
Digital Microscopic Inspection
Burn-In \& Life Testing
Thermal Shock \& Temperature Cycling
Humidity, Salt Fog, \& Solderability
Moisture Resistance \& Seal Testing
high frequency

- Ability to carry RF signals
from DC up to 7 GHz
- Internal coaxial shields
for 50Ω impedance
- <0.3pF typical capacitance

intrinsically safe
- ATEX/IECEx approved relays and optocouplers
- High isolation and non-arcing
- ATEX relays used for galvanic separation
high voltage
\& isolation
- Up to 10kVDC switching
- Up to 15 kVDC isolation
- Switching currents up to 3 amps and carry currents up to 5 amps

high density
- Small thru-hole and SMT packages for closely stacked matrices
- Multiple pole packages for reduced material handling
- High voltage and high carry currents in standard packages

low thermal

- Thermal offset $<1 \mu \vee$
- Insulation resistance >10^12
- High voltage isolation up to 1.5 kVDC
general purpose
- Hermetically sealed reed switch technology - Multitude of package sizes in SMT and thru-hole
- Long life expectancy and high insulation resistance

- 4-8 pole relays in single package
- Built-in relay drivers and shift registers
- Up to 4GHz RF signals

PARTNER | SOLVE | DELIVER ${ }^{\odot}$

Our
Approach

PARTNER //TEAMWORK
Dig deep into the customer's project and develop relationship through our thought leadership, expertise, team, and global footprint.

SOLVE // UNDERSTAND

Capabilities, lab, size, shape, power management, ranges, frequency, and more around how our capabilities can provide efficient, productive, designs \& products.

DELIVER // QUALITY

Help customers win through our diverse products, dynamic capabilities, reliable high-quality magnetics solutions, and customer driven innovation and service.

Our Custom Solutions Process

- Understand Application
- Define Design Targets
- No. of Switches \& Form (A,B,C,E)
- Coil Voltage
- Max Voltage, Power, \& Current
- Hot or Cold Switching
- Life Expectancy Requirements
- Isolation Requirements
- Impedance Limitations
- Temperature Range
- Certifications \& Standards
- Open Engineering Team Dialogue
- Footprint, Special Pin-Outs
- Optimize Efficiency
- Electrical Modeling
- Preliminary Design Approval
- Identify Custom Components
- Creepage \& Clearance Distances
- Generate Print \& Quotation
- Final Design Approval
- Generate BOM
- Order Material
- Queue Samples
- Sample Build
- Test \& Report
- Application Testing
- Feedback
- Repeat As Needed

- Production Order
- APQP
- FAI
- DFMEA \& PFMEA
- Line Audit
- PPAP
- Delivery
- Sustaining Engineering

Complex problems deserve custom solutions - As your "application engineer experts", we deliver custom design, development, and manufacture of reliable high-quality reed relays \& optocouplers that are used across all major markets.

Standex \mid Strong.

REED RELAY TECHNOLOGY

"Fast switching in the hundreds of microseconds and long life capability that surpasses electromechanical relays."

The Standex Electronics brand "MEDER electronic REED RELAYS" came as the result of the 2012 acquisition of MEDER electronic in Germany, where the production of high quality reed relays originated. Reed relays and reed sensors both use the reed switch as the heart of their switching mechanism. Therefore, all the features associated with Standex Electronics' reed switch technology are captured in MEDER electronic reed sensors and MEDER electronic reed relays. New applications continue to arise at a significant pace for both products because of the reed switch's unique switching capability.

Standex Electronics is the world's largest manufacturer of reed switches (>700M/yr) with >50\% market share offering the most comprehensive listing of reed switches that cover the majority of low power switching requirements. Because reed switches are hermetically sealed (glass to metal seal) they are impervious to almost all environments. This opens up a vast number of applications where they are the only technology capable of meeting specific requirements where certain mechanical switches and semiconductor switches are environmentally limited.
$M=D=R$ electronic

REED RELAYS
A STANDEX ELECTRONICS BRAND

STANDEX ELECTRONICS UNIQUE ADVANTAGES

Global leader in reed relay manufacturing and world's largest reed switch manufacturer >50\% market share

- Unique flat blade switches 4 mm \& 10 mm for SMD processes
- High voltage vacuum version now available
- Highest industry quality and manufacturing volume
- Suitable for high-reliability automotive \& ATE
- Long life expectancy, wider product range with form C, high voltage, etc.
- Most reliable in the market

In-house life testing capabilities

- Unique, proprietary life cycle testing technology
- Monitors and analyzes each cycle in real time
- Adjustable loads, from 1 milliwatts up to 100 watts
- Speeds of 100 hertz, 100 times per second

ELECTRICAL \& MECHANICAL BENEFITS

Long life, billions (10^9) of operations (load dependent)
Multi-pole configurations up to 8 poles
Form A, B, C, and E versions
Stable low contact resistance <150 m Ω
High insulation resistance $>10^{\wedge} 14 \Omega$
Ability to switch up to 10,000 VDC
Breakdown voltages and dielectric strength up to 15kVDC
Carry currents up to 5 Amps continuous (10 Amps pulsed)
Withstand shocks to 100 g , vibrations $50-2,000 \mathrm{~Hz}$ at 20 g
Hermetically sealed switches
Operate times in the $500 \mu \mathrm{~s}$ to 3 ms range
Suitable for high density matrix assembly
Wide array of coil resistances
Large assortment of package styles and pin-outs

OUR PRODUCTS ARE RECOGNIZED*
Tested in accordance with AEC-Q200
In compliance with UL, CSA, EN60950, VDE, BABT 223ZV5,

HIGH ISOLATION MEASUREMENT
KT Series (SMT/THT $30 \times 11 \times 9 \mathrm{~mm}$)

- Switching voltage 1 kVDC
"Reed Relays are making headway in some of the most demanding applications and emerging markets."

W e offer engineered reed relay solutions for a broad spectrum of product applications in all major markets. Battery charging, electric vehicles, solar inverters, medical, and test and measurement markets are just some of the areas where reed technology is gaining ground.

APPLICATIONS

Automotive, Electric \& Hybrid Vehicles

- Battery Management Systems
- Battery Conditioning
- High Insulation Measurement

Renewable Energy - PV Systems

- Solar Inverters
- Power Distribution

Medical Equipment

- Surgical Generators
- Automated External Defibrillators
- Isolation Functions

Test \& Measurement

- Integrated Circuit Testers
- Automated \& Precision Test Equipment
- Multiplexers, High Density Matrices

Intrinsic Safety

- Electronics, Mining, Oil \& Gas Production
- Geothermal \& Seismic Instrumentation
- Breakdown voltage 4kVDC
- Dielectric strength (coil-contact) 7kVDC
- Creepage distance >17mm
- Air clearance 12 mm
- Ambient range $-40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}$
- Capable of $125^{\circ} \mathrm{C}$ internal temperature
- Millions of operations at $800 \mathrm{~V}-1 \mathrm{kVDC}$
- Tested in accordance with AEC-Q200
- UL94 approved

KT SERIES IN BATTERY MANAGEMENT SYSTEM

"When properly designed-in, the reed relays features will stand up to the high requirements of modern electric devices very well."

REED RELAY SELECTION GUIDE

Complex problems deserve custom solutions - "Custom parameters for design in a large array of packages."

Reed Relays are ideally used for switching applications requiring low and stable contact resistance, low capacitance, high insulation resistance, long life and small size. For specialty requirements such as high RF switching, very high voltage switching, extremely low voltage or low current switching, Reed Relays are ideal.

Custom-made relays are designed to offer specific features and parameters, such as a latching function, very high insulation resistance, different shielding options etc., and thereby appropriately complete our product range of standard relays.

MEPAR electronic		General Purpose			High Density Boards			
Reed Relay Series	BE	DIL	DIP	MS	SIL	UMS	CRR	RM05-8A-SP
Package / Mounting	Potted/THT	Potted/THT	Molded/THT	Molded/THT	Molded/THT	Molded/THT	Molded/SMD	Molded/THT
Contact Form	1-5A, 2 (B,C)	$\begin{aligned} & 1-4 \mathrm{~A}, 1(\mathrm{~B}, \mathrm{C}), \\ & 2(\mathrm{~A}, \mathrm{C}) \end{aligned}$	$\begin{aligned} & 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C}), \\ & 2 \mathrm{l} \end{aligned}$	1A	1 (A,B,C)	1A	1A	$8 \mathrm{~A}+$ shift register
Power rating Max. (W)	100	10	10	10	10	10	10	10
Switching voltage Max. (VDC)	1000	500	500	200	500	170	170	170
Switching current Max. (A)	10	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Carry current Max. (A)	2.5	1.0	1.0	1.0	1.0	1.0	1.0	0.5
Breakdown voltage Min. (VDC)	2500	1000	1000	225	1000	210	210	210
Insulation resistance Min. (Ω)	$10^{\wedge} 13$	10^{11}	$10^{\wedge} 10$	$10^{\wedge} 10$	$10 \wedge 10$	10^10	10^11	$10^{\wedge} 10$
Coil resistance Min-Max. (Ω)	140-8,000	500-10,000	500-2,000	280-700	200-2,000	400-500	70-150	8×500
Coil voltage(s)	5,12, 24	5,1224	3,5,12, 15, 24	5,12	3, 5, 12, 15, 24	5	3,5	5 (3.3 diver)
Options and features	Plastic/metal case Many pin-outs Up to 5 A switches	Mercury optional Int. mag shield Line sense $11 \mathrm{k} \Omega$ coil Dielectric 4.25 kVDC	Flyback diode Mercury optional IC compatible in-line Dielectric 4kVDC	Flyback diode Micro in-line	Flyback diode Mag shield	UUltra micro in-line Int. mag shield Flyback diode	Ball Grid Array (BGA) Int. mag shield Tape \& Reel	Driver MAX4823 Kickback Protection, Serial Interface Compact size
Highlights \&	W	\cdots	W	W	W	W	W 8	W
Certifications		${ }_{\text {chios }}$	${ }^{\text {chios }}$	${ }_{\text {c }}{ }^{\text {¢ }}$	${ }_{c} \mathrm{Nr}_{\text {us }}$	${ }_{\text {cin }}$	${ }^{\text {chios }}$	
Ordering info on page(s)	19	19	19	19	20	20	20	20
16				ULproved	ackaging			

$\frac{\text { electronic }}{\text { uto nums }}$	High Density Boards	High Voltage \& High Isolation					
Reed Relay Series	SHV	KT	LI	SHV	BE/MRE	H	HE
Package / Mounting	Molded/THT	Molded/SMD, THT	Potted/THT	Molded/THT	Potted/THT	Molded/Open Frame	Potted/THT, Cable
Contact Form	1A	1A	1A	1A	1A, 2A	1 (A, B)	$\begin{aligned} & 1(A, B) \\ & 2 A \end{aligned}$
Power rating Max. (W)	100	100	100	100	100	50	50
Switching voltage Max. (VDC)	1000	1000	1000	1000	1000	1000	10000
Switching current Max. (A)	10	10	10	10	10	30	30
Carry current Max. (A)	2.5	2.5	2.5	2.5	2.5	50	50
Breakdown voltage Min (VDC)	4000	4000	4200	4000	6000	15000	15000
Insulation resistance Min. (Ω)	1010	1011	$10 \wedge 12$	1010	$10 \wedge 14$	$10^{\wedge 114}$	10113
Coil resistance min-Max (Ω)	$140-2000$	$65-1,800$	150-2,000	$140-2000$	70-1,400	$180-700$	50-1,500
Coil voltage(s)	5,12, 24	3, 5, 12, 24	5,12, 24	5,12, 24	5,12,24	1224	5,12,24
Options and features	Flyback diode Int. mag shield	Isolation 7KVDC High creepage/clearance Tape \& Reel	Isolation 7KVDC High creepage/clearance	Flyback diode Int. mag shield	Plastic/metal case High creepage/clearance		Creepage distance $>26 \mathrm{~mm}$
Highlights \&	W	*旦 F-8)	w	W	w	\cdots	m
Certifications	${ }_{c} \mathrm{Nn}_{\text {us }}$	AEC-200 crivi		${ }_{c} \mathrm{Na}_{\text {us }}$		${ }_{c} \mathrm{TN}_{\text {us }}$	
Ordering info on page(s)	21	21	21	21	21	22	22

electronic	Special			
Reed Relay Series	SHC	MRX	BT/BTS	DIP / SIL
Description	High Current Compact with High Current switching and carrying capabilities	Intrinsically Safe Relays certified for Explosive Environments and Hazardous Locations	Low Thermovoltage Special internal design for very low Thermal Voltage Offset between Input and Output	Low Coil Consumption "HR" suffix = higher coil resistance than standard, hence need a lower current
Package / Mounting	Molded/THT	Molded/THT	Potted/THT	Potted/THT
Contact Form	1A	1 (A,B)	2A	1A
Power rating Max. (W)	50 (120)	10	100	10
Switching voltage Max. (VDC)	150	200	1000	200
Switching current Max. (A)	20	0.5	1.0	0.5
Carry current Max. (A)	5.0 (7.0 as a pulse)	10	2.0	1
Breakdown voltage Min (VDC)	250	1500	1500	200
Insulation resistance Min (Ω)	$10 \wedge$	10110	1011	$10 \wedge$
Coil resistance Min-Max ()	$140-2,00$	$280-700$	$350-500$	$1000-200$
Coil voltage(s)	5,12,24	5,12	5,12,24	5,12
Options and features	Dielectric Strength 4kVDC, Int. Mag Shield Alternative for Mercury switches	Special pin-outs, Ex-Approved for Intrinsically Safe Circuits	Thermal Offset $<1 \mu \mathrm{~V}$, Magnetic Shield Special Pinouts	Magnetic Shield, Flyback Diode
Highlights \& Certifications		Ex	\cdots	\pm
Ordering info on page(s)	24	24	24	25

MEDER

	Special		
Reed Relay Series	BE	NP-CL / DIL-CL	SPL
Description	Latching A short coil pulse closes contacts which remain unchanged until opposite pulse is present	Current Loop Sensitive relays activated by a current level in range of milliamperes	Customized Design - Customized and special relay designs on demand
Package / Mounting	Potted / $\overline{\text { THT }}$ -	Potted/THT	c
Contact Form	1 E	1A	,
Power rating Max. (W)	10	5	Y
Switching voltage Max. (VDC)	500	100	
Switching current Max. (A)	0.5	0.5	
Carry current Max. (A)	1.5	1	
Breakdown voltage Min. (VDC)	2000	100	
Insulation resistance Min (Ω)	1011	1009	
Coil resistance Min-Max. (Ω)	$850-500$	4-9	
Coil voltage(s)	5,12	Pull-In in mA range	
Options and features	Latching, 2 Input Coils, Metal Housing Magnetic Shield	Magnetic Shield 2 Coils Optional	
Highlights \& Certifications	W	(1)	
Ordering info on page(s)	25	25	

Test \& Measurement

SOLUTIONS | Reed Relays

Note: All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$. Please refer to the product datasheets on our website for full dimensions, specifications, tolerances, etc. Not all part number combinations are possible, consult the factory for more info. We reserve the right to make any changes according to technological progress or further developments

BE $\quad \frac{00}{1}-\frac{0}{2} \frac{X}{3} \frac{00}{4}-\frac{X}{5}$
General Purpose

Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 140-8,000

1 Nominal Voltage: $05,12,24$		Highlights Up to 5 A
2 Contact Quantity: $1-5 \mathrm{FA}, 1-2 \mathrm{~B}, 1-2 \mathrm{C}$		

*Option (V) offers 4.5kVDC dielectric coil to contact
High IR 10^13

DIP $\quad \frac{00}{1}-\frac{0}{2} \frac{X}{3} \frac{00}{4}-\frac{00}{5} \frac{X}{6}$
Rated Power Max. 10W/500VDC/0.5A | Coil Resistance Ω 500-2,000

2 Contact Quantity: 1,2
3 Contact Form:
72.75
c껜
Dielectric 4kVDC
IC Compatible in-line
*Breakdown voltage contact to coil 4kVDC

DIL $\quad \frac{00}{1}-\frac{0}{2} \frac{X}{3} \frac{00}{4}-\frac{00}{5} \frac{X}{6}$

Rated Power Max. 10W/500VDC/0.5A | Coil Resistance Ω 500-10,000

| 1 Nominal Voltage: $05,12,24$ | | Highlights |
| :--- | :--- | :--- | :--- | :--- |
| 2 Contact Quantity: $1-4 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 2 \mathrm{~A}, 2 \mathrm{C}$ | | |

MS $\quad \frac{00}{1}-\frac{1}{2} \frac{A}{3} \frac{87}{4}-\frac{75}{5} \frac{X X X}{6}$
Rated Power Max. 10W/200VDC/0.5A | Coil Resistance Ω 280-700

Rated Power Max. 10W/500VDC/0.5A | Coil Resistance Ω 200-2,000

1	Nominal Voltage:	03, 05, 12, 15, 24	Highlights
2	Contact Quantity:	1	
3	Contact Form:	A, B, C (Form C in 5V only)	c
4	Switch Model:	72,75,90	Dielectric 4kVDC
5	Pin-Out:	71, 73 (73 = 4 kV Dielectric)	IR 10^11,
6	Option:	L, M, D, Q (HR)=High Resistance coil	
	o option, D=Diode	M=Mag Shield, $\mathrm{Q}=\mathrm{D}+\mathrm{M}$	1

CRR $\frac{00}{1}-\frac{1}{2} \frac{A}{3} \frac{X}{4}-\frac{(250)}{5}$

High Density Boards

Rated Power Max. 10W/170VDC/0.5A | Coil Resistance Ω 70-150

UMS $\frac{05}{1}-\frac{1}{2} \frac{A}{3} \frac{80}{4}-\frac{75}{5} \frac{X X X}{6}$
Rated Power Max. 10W/170VDC/0.5A | Coil Resistance Ω 400-500

RM $\frac{05}{1}-\frac{8}{2} \frac{A}{3}-\frac{S P}{4}$
High Density Boards/Relay Modules

Rated Power Max. 10W/170VDC/0.5A | Coil Resistance $\Omega 500$
1 Nominal Voltage: 05
2 Contact Quantity: $8+$ shift register
3 Contact Form: A
4 Pin-out: \quad SP=Standard in-line pin-out $2 \times 2 \mathrm{~mm}$ \qquad

Tape \&
Reel Packaging

SOLUTIONS | Reed Relays

Note: All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$. Please refer to the product datasheets on our website for full dimensions, specifications, tolerances, etc. Not

KT
$\frac{00}{1}-\frac{1}{2} \frac{A}{3}-\frac{40}{4} \frac{X}{5}-\frac{X X X}{6}$
High Voltage \& Isolation

Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 65-1,800

LI $\quad \frac{00}{1}-\frac{1}{2} \frac{\mathrm{~A}}{3} \frac{00}{4}$
High Voltage \& Isolation

Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 150-2,000

SHV $00-1$ A $85-78$ XOK \quad High Voltage \& Isolation
Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 140-2,000

High Voltage \& Isolation
MRE
Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 70-1,400

1	Nominal Voltage: 05, 12,24	Highlights
2	Contact Quantity: 1,2	Switching1kVDC
3	Contact Form: A	Breakdown
4	Switch Model: 85	6kVDC
5	Housing Option: (P)lastic, (M)etal, (V) High Insulation	High IR 10^14 Ω
Isolation Voltage up to 6 kVDC		H

Test \&
Measurement
${ }^{c} \cdot \mathbf{N}_{\text {us }}$ \qquadTape \&
Reel Pack

MEP:
 electronic
 ateo relars

Note: All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$. Please refer to the product datasheets on our website for full dimensions, specifications, tolerances, etc. Not all part number combinations are possible, consult the factory for more info. We reserve the right to make any changes according to technological progress or further developments

H $\quad \frac{00}{1}-\frac{1}{2} \frac{X}{3} \frac{00}{4}$
Rated Power Max. 50W/10,000VDC/3A | Coil Resistance Ω 180-700

1	Nominal Voltage:	12,24	Highlights
2	Contact Quantity:	1	Switching10kVDC
3	Contact Form:	A, B	Breakdown
4	Switch Model:	69,83	15kVDC

High IR 10^14 Ω
Mo

HE $\quad \frac{00}{1}-\frac{0}{2} \frac{X}{3} \frac{00}{4}-\frac{000}{5}$
High Voltage \& Isolation

Rated Power Max. 50W/10,000VDC/3A | Coil Resistance Ω 50-1,500

$$
\text { HM } \quad \frac{00}{1}-\frac{1}{2} \frac{\times}{3} \frac{00}{4}-\frac{000}{5}
$$

High Voltage \& Isolation

Rated Power Max. 50W/10,000VDC/3A | Coil Resistance Ω 10-1,650

HI $\quad \frac{00}{1}-\frac{1}{2} \frac{\mathrm{~A}}{3} \frac{00}{4}$
High Voltage \& Isolation

Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 140-3,000

1	Nominal Voltage:	05,12	Highlights
2	Contact Quantity:	1	Switching1kVDC
3	Contact Form:	A	High IR 10^14
4	Switch Model:	66, 75,85	

Test \& Measurement

SOLUTIONS | Reed Relays

Note: All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$. Please refer to the product datasheets on our website for full dimensions, specifications, tolerances, etc. Not
MEDFR all part number combinations are possible, consult the factory for more info. We reserve the right to make any changes according to technological progress or further developments

CRF $\quad \frac{00}{1}-\frac{1}{2} \frac{A}{3} \frac{X}{4}-\frac{(250)}{5}$
High Frequency

Rated Power Max. 10W/170VDC/0.5A | Coil Resistance Ω 70-150
1 Nominal Voltage: 03, 05
Highlights
2 Contact Quantity: 1
3 Contact Form: A c
4 Mount:
$S(B G A)$, empty $=$ standard
empty=1,000pcs standard, 250=250pcs option \qquad $7 \mathrm{GHz}>40 \mathrm{ps}$ rise Coax screen Z

IR 10^11 Ω

High Frequency

Rated Power Max. 25W/500VDC/1.5A | Coil Resistance Ω 40-1,000

1	Nominal Voltage:	05,12,24	Highlights
2	Contact Quantity:	1	Carry current 5A(230MHz
3	Contact Form:	A	
4	Switch Model:	54	Breakdown up to 9kVDC
5	Breakdown Voltag	$5,6,8,9$	IR 10^11 ${ }^{\text {a }}$
Complete Electrostatic and Magnetic Shielding			

RM $\quad \frac{05}{1}-\frac{4}{2} \frac{A}{3} \frac{S}{4}-\frac{0 / 0}{5}$
High Frequency/Relay Modules

Rated Power Max. 10W/170VDC/0.5A | Coil Resistance $\Omega 185$

1	Nominal Voltage: 05	Highlights
2	Contact Quantity: 4	4-pole
3	Contact Form: A	Low Profile
4	Solder Balls: S (BGA)	>40ps rise
5	Input: 4	IR 10^10 ${ }^{\text {a }}$
6	Output: ---------- 2 , 4	n

SIL $\frac{00}{1}-\frac{1}{2} \frac{A}{3} \frac{72}{4}-\frac{74}{5} \frac{X}{6}$
High Frequency

Rated Power Max. 10W/200VDC/0.4A | Coil Resistance Ω 500-1,000

1	Nominal Voltage:	05,12
2	Contact Quantity:	1
3	Contact Form:	A
4	Switch Model:	72
5	Pin-Out:	74
6	Option:	L (Standard), D (Diode)

Tape e
Reel Packaqing

Rated Power Max. 50W/150VDC/2.0A | Coil Resistance Ω 140-2,000

1	Nominal Voltage: 05, 12,24	Highlights
2	Contact Quantity: 1	5A Carry Current
3	Contact Form: A	7A Pulsed)
4	Switch Model: 82	Breakdown 250 VDC
5	Pin-Out: 78	IR 10^9

6 Option: --- L Standard, D Diode

MRX $\frac{00}{1}-\frac{0}{2} \frac{X}{3} \frac{00}{4}$
Special - Intrinsically Safe

Rated Power Max. 10W/200VDC/0.5A | Coil Resistance Ω 280-700
1 Nominal Voltage: 05,12
2 Contact Quantity: 1
3 Contact Form: A, B
4 Switch Model: 71, 79, 90
Breakdown
1.5 kVDC

SOLUTIONS | Reed Relays

Note: All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$. Please refer to the product datasheets on our website for full dimensions, specifications, tolerances, etc. Not all part number combinations are possible, consult the factory for more info. We reserve the right to make any changes according to technological progress or further developments.
$\mathrm{SILI}_{\text {SI }} \frac{00}{1}-\frac{0}{2} \frac{\times}{3} \frac{00}{4}-\frac{00}{5} \frac{\mathrm{XHR}}{6}$
Special - Low Coil Consumpion

Rated Power Max. 10W/200VDC/0.5A | Coil Resistance Ω 1,000-2,000

*For dimensions refer to the standard DIP (p19) and SIL (p23) section

BE $\quad \frac{00}{1}-\frac{0}{2} \frac{X}{3} \frac{00}{4}-\frac{X}{5}$

Special - Latching

Rated Power Max. 100W/1000VDC/1A | Coil Resistance Ω 500-800

1 Nominal Voltage: $05,12,24$		Highlights
2 Contact Quantity: $1 \mathrm{E}, 2 \mathrm{~A}+2 \mathrm{~B}$		Latching
3 Contact Form:	(A+B), E	Switching
4 Switch Model:	66,85	
5	Housing Option:	(M)etal

NP-CL/ $\frac{1}{1} \frac{\mathrm{~A}}{2} \frac{00}{3}-\frac{0000}{4}-\frac{000}{5}$

Special

Rated Power Max. 10W/200VDC/0.5A | Coil Resistance Ω 4-18
. Pull-In in mA range
Highlights

2 Contact Form: A $\quad 2$ Coils Optional
3 Switch Model: 66,81
4 Coil Resistance: $\quad 4 / 4,9,10,15,18$
5 Pin-Out: $\quad \mathrm{DIL}=13,15,18 \mathrm{NP}=210,213,218$
Standard Pull-In Current $=15 \mathrm{~mA}$

- Test \& Measurement

OPTOCOUPLER SELECTION GUIDE

＂Optocouplers Handle Hazardous Environments And Meet ATEX Intrinsically Safe Requirements．＂

0ften times electronic equipment is required to carry out certain functions in potentially explosive atmospheres．To prevent potential ignition of the explosive atmosphere via a spark or arc in these environments，all components must be selected very carefully．Components meeting these requirements are generally referred to as intrinsically safe．These components must be tested such that they will not become an ignition point when subjected to short circuits or adjacent component failures．They must also switch to a defined state when subjected to overload conditions．Our 522－03－i，525－03－0－i，535－04－0－i，and 567－70－i Optocoupler and MRX reed relay series（page 24）are all ideal for this environment．

MEDER		Intrinsi				Special	
Optocoupler Series	522	525	535	567	521	528	530
Description	Small housing with creepage distance of 12 mm and Isolation 4000VDC	Compact hous－ ing with creepage distance of 14.5 mm and Isolation 4000VDC	Optocoupler with Darlington Output and Current Transfer Ratio of 300\％	Optocoupler with Schmitt Trigger as Output ensures transmission frequency up to 500 kHz	Stable Optocoupler with a higher creepage distance of 25.4 mm and Isolation 6，000VDC	Two Optocouplers integrated into one housing with high Isolation of 10，000VDC	Slim housing with extra high Isolation from 10,000 to 22，000VDC
Output	Transistor	Transistor	Datingor		Transistor	Two transistors	Transisistor
Package Mounting	Potted $/$ THT	Potted 7 THiT	Potted $/$ THi	Potted 7 THT	Potted 7 THiT	Potted THET	Potted $/$ THiT
Isolation Voltage Input／Output Min（VDC）	4，000	4，000	4，000	4，000	6，000	10，000	10，000－20，00
Creeping Distance，Air Path $1 / 0 \mathrm{Min}$ ．（mm）	12	14.5	14.5	14.5	24.5	42	34
Current Transfer Ratio Ic／If（ $1 \mathrm{f}=10 \mathrm{~mA}$ ）Min．（A）	0.5	0.5	3.0		0.5	0.9	0.5
Transmission frequencies up to（KHz）	85	50	2	50	50	50	
Insulation resistance input／output up to（ Ω ）	$10 \wedge 12$	$10 \wedge 12$	$10 \wedge 13$				
Ambient Temperature（ ${ }^{\circ} \mathrm{C}$ ）	－40 to 85	－40 to 85	－40 to 85	－20 to 85	－40 to 85	－40 to 85	－40 to 85
Options and features	Small size	Small size	High current transfer ratio	Fast switching time	High creepage distance	Two optocouplers in one housing	Extra high voltage isolation
Highlights \＆Certifications	里 閶	里 ${ }^{\text {a }}$		因 $\underbrace{\text { a }}$			
Ordering info on page（s）	28	28	29	29	30	30	31
26			$\mathrm{V}_{\text {lied }}^{\text {－}}$－				

TYPICAL OPTOCOUPLER FEATURES

- Galvanic separation between input \& output circuits
- Analog \& digital signal transfer is possible
- Marginal coupling capacities between input \& output
- Minor output delay times compared to relays
- Long life due to non-abrasive mechanical wear
- Isolation resistance between input \& output up to 10^13』
- Magnetic fields do not impact operation
- A photodiode makes very short cycle times (microseconds) possible, with up to 500 KHz
- Isolation voltage between input \& output up to 22 kVDC
- Able to invert the output signal during transfer
- Lifetime factor increased by a factor of 10 , if the LED is used with < 50\% of the nominal current
- Resistant against voltage drop
- ATEX \& IECEx certified

522

	Intrinsically Safe	
Insulation resistance input / output up to $10^{\wedge} 12 \Omega$, Transmission frequencies up to 85 KHz		
Turn On/ Off Time ($\mu \mathrm{sec}$)	5.5/4.2	Highlights
Collector-Emitter Voltage Max. (VDC)	32	
Forward Voltage Uf' max. (VDC)	1.5	
DC Forward Current If max. (mA)	75	
Emitter Power Dissipation Ptot max. (mW)	170	Protection: II(1)G
Collector Power Dissipation Ptot max. (mW)	100	
Output	Transistor	FCEx
Isolation Voltage Input/ Output Min (VDC)	4,000	
Turn On/Off Creeping Distance, Air Path I/O Min. (mm)	12	貌
Current Transfer Ratio Ic/If (If = 10mA) Min (A)	0.5	Small Package

Layout
(Top View)

Insulation resistance input / output up to $10^{\wedge} 12 \Omega$, Transmission frequencies up to 50 KHz

Turn On / Off Time ($\mu \mathrm{sec}$)	5.5/4.2	Highlights
Collector-Emitter Voltage Max. (VDC)	32	
Forward Voltage Uf max. (VDC)	1.5	
DC Forward Current If max. (mA)	100	
Emitter Power Dissipation Pot max. (mW)	170	Protection: II(1)G [Exia Ga] IIC
Collector Power Dissipation Ptot max. (mW)	100	[Exia Ga]
Output	Transistor	$\operatorname{RCE} x$

Isolation Voltage Input/ Output Min. (VDC) 4000

Current Transfer Ratio Ic/If (If = 10mA) Min. (A) 0.5
Small Package

Test Circuit

Layout (Top View)
 LECEX
Certifie rtfied

SOLUTIONS｜Optocouplers

Note：All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$ ．Please refer to the product datasheets on our website for full dimensions，specifications，tolerances，etc．Not
MEPAR all part number combinations are possible，consult the factory for more info．We reserve the right to make any changes according to technological progress or further developments

535
Intrinsically Safe
Insulation resistance input／output up to $10^{\wedge} 13 \Omega$ ，Transmission frequencies up to 2 KHz
Turn On／Off Time（ $\mu \mathrm{sec}$ ）

19．5／212	Highlights
32	
1.5	c
100	（x）
170	Protection：II（1）G ［Ex ia Ga］IIC
100	
Darlington	IECEx
4，000	

Isolation Voltage Input／Output Min（VDC） 4，000
Turn On／Off Creeping Distance，Air Path I／O Min．（mm）
14.5
3.0

Test Circuit

Layout
（Top View）

567

Insulation resistance input／output up to $10^{\wedge} 12 \Omega$ ，Transmission frequencies up to 500 KHz
Turn On／Off Time（ $\mu \mathrm{sec}$ ）0．5／0．5 Highlight

Collector－Emitter Voltage Max．（VDC）
Forward Voltage U＇max．（VDC）
DC Forward Current I＇max．（mA） \qquad 45 \qquad
Protection． Emitter Power Dissipation Pot max．（mW）
\qquad -
-85
Collector Power Dissipation Plot max．（mW）
Output \qquad Schmitt Trigge
Isolation Voltage Input／Output Min．（VDC）
4，000
Current Transfer Ratio lc／ff（ff $=10 \mathrm{~mA}$ ）Min．（A）

Test Circuit

Transfer Characteristics（IFT）

Layout
（Top View）

Test Circuit

528

Insulation resistance input / output up to $10^{\wedge} 12 \Omega$, Transmission frequencies up to 50 KHz

Turn On / Off Time ($\mu \mathrm{sec}$)	5.5/4.2	Highlights
Collector-Emitter Voltage Max. (VDC)	70	2 Optocouplers
Forward Voltage Uf max. (VDC)	1.5	in one package
DC Forward Current If max. (mA)	100	
Emitter Power Dissipation Ptot max (mW)	170	
Collector Power Dissipation Ptot max. (mW)	100	
Output	Two Transistors	
Isolation Voltage Input/ Output Min. (VDC)	10,000	
Turn On / Off Creeping Distance, Air Path I/ O Min. (mm)	42	
Current Transfer Ratio Ic/If (If $=10 \mathrm{~mA}$) Min. (A)	0.9	

Test Circuit
Layout
(Top View)

SOLUTIONS | Optocouplers

Note: All dimensions are in mm and tolerances according to $1502768-\mathrm{m}$. Please refer to the product datasheets on our website for full dimensions, specifications, tolerances, etc. Not

Special
Insulation resistance input / output up to $10^{\wedge} 13 \Omega$, Transmission frequencies up to 50 KHz

Turn On / Off Time ($\mu \mathrm{sec}$)	5.5/4.2	Highlights
Collector-Emitter Voltage Max. (VDC)	32	Extra high Isolation Voltage
Forward Voltage Uf' max. (VDC)	1.5	
DC Forward Current If max (mA)	100	0
Emitter Power Dissipation Ptot max. (mW)	170	
Collector Power Dissipation Ptot max. (mW)	100	
Output	Transistor	
Isolation Voltage Input/ Output Min. (VDC)	10,000-20,000	
	(22,000 Option)	

Turn On / Off Creeping Distance, Air Path I/O Min. (mm) 34
Current Transfer Ratio Ic/If (If = 10mA) Min. (A) 0.
\qquad 0.5

Test Circuit
Layout
(Top View)

Standex \mid Smart.

MEDER
 electronic
 REED RELAYS

ECARS \& ALTERNATIVE ENERGY

"Reliable, energy efficient, and high isolation control"

S
tandex Electronics reed relays meet the requirements for proper isolation control within photovoltaic systems and the internal measurement systems of electric vehicles. Especially for measuring isolation resistance across several components within a power system for solar market applications or prior to grid connection. They also assist in detecting current leaks, saving power and preventing injuries

GENERAL REQUIREMENTS - APPLICATION DEPENDENT
High Isolation between control and load circuit (KT, LI)
High Isolation across contacts (KT, LI)
Capability of switching high voltage up to 1 kVDC
Capability of carrying very low current (leakage current detection)
High Reliability
Long Lifetime
Compact Size
High Creepage \& Clearance Distance
Following the norms IEC 60664-1, ISO 6469-3 and IEC 62109-1/2

Standex |Strong.

MEDER
 electronic

$\frac{\text { REED RELAYS }}{}$

TEST \& MEASUREMENT

"Passing fast digital pulses with excellent Isolation"

Switching both low and high level loads, and passing fast digital pulses (picosecond range) in a 50 ohm impedance environment, while offering excellent isolation are just a few of the features that make Standex Electronics reed relays idealy suited in Test \& Measurement applications.

GENERAL REQUIREMENTS - APPLICATION DEPENDENT
Perfect Isolation between coil / contact and across the open switch (KT, LI, SHV, BE, HI, H, HE, HM) Capability of switching both low and high level loads

Internal Magnetic Shield for High Density Assembly (CRF, CRR, UMS, RM, SHV, SHC) High Reliability and Long Lifetime

Low Leakage Currents
Fast Operation Time
High Frequency Signals (CRF, RM-4A, SIL-RF, HF) Low Thermal Offset Voltage (BT/BTS)

Contact Capacitance 0.3 pF (CRR, CRF, UMS)

APPLICATIONS

Insulation Testers
Digital Multimeter (DMM) \& Oscilloscopes
Semiconductor Testers
Multiplexers \& Data Selectors
Matrix Switches
Automated test Equipment
Cable Harnesses Testers
Embedded PCB Testers

CUSTOMER CONFIGURATIONS

Customized series MRE, SPL and many others
Open designs for very high IR coil to contact >10^14 High Creepage \& Clearance Distances
Electrostatic Screen and Magnetic Shield optional
Switching RF signals up to 7 GHz
Internal Magnetic Shield for High Density Assembly
Customized coil voltage and pin-outs

- High coil resistance for low consumption

Latching version with one or two coils

Standex \mid Smart.

MEDER
 electronic

a standex electronics bran

MEDICAL

"Reliably carry high voltage and frequency signals while providing vital galvanic isolation."

Most of today's modern hospitals around the world are now equipped with new state of the art surgical operating rooms. Only reed relay technology is equipped to handle the high frequency, high current, and high voltage isolation requirements in a reliable and safe manner in medical
 equipment such as surgical generators and automated external defibrillators.

GENERAL REQUIREMENTS - APPLICATION DEPENDENT
High Isolation between control and load circuit
High Isolation across contacts
High Creepage \& Clearance Distances
Capable of handling high voltage
High Reliability
Long Lifetime
Following the norms IEC 60601-1, IEC 61010 and IEC 60255-27

Standex |Strong.

MEDER
 electronic

REED RELAYS
STANDEX ELECTRONICS BRAN

INTRINSICALLY SAFE

"Isolation up to 4 kVDC and non-arcing environments"

0ur line of optocouplers can safely handle input/output isolation as high as 4,000 VDC that have met and been certified for the stringent requirements of ATEX. They offer insulation resistances as high as $10^{\wedge} 13$ ohms, operate in less than $10 \mu \mathrm{sec}$, and creepage distances from input to output are up to 14.5 mm . (see page 26 for more info)

GENERAL REQUIREMENTS - APPLICATION DEPENDENT

Intended for use in Systems in Potentially Explosive Atmospheres
ATEX certified: KIWA 18ATEX0017U (Directive 2014/34/EU), Protection: II(1)G [Ex ia Ga] IIC In compliance with EN60079-0:2012+A11:2013 and EN60079-11:2012
IECEx certified: KIWA 18.0009U, Protection: [Ex ia Ga] IIC
High Isolation Voltage between Input and Output up to 4 kVDC
Isolation resistance up to 10^13 Ohm
Fast Switching Time in microseconds
High Reliability and Long Lifetime due to non-abrasive mechanical wear Long creepage distances
Marginal coupling capacities between input and output
Magnetic fields do not impact operation

